Non Invasive Blood Pressure OEM board

NIBP 2010

with

PULSE OXIMETRY SpO₂

Hardware-Version : C Firmware-Version : 3.44

Issued:	L. Engel	Approved:	B. Tek	Released:	B. Tek
Date:	24.01.17	Date :	24.01.17	Date:	24.01.17
Signature:	Engel	Signature :	B. Tek	Signature:	B. Tek

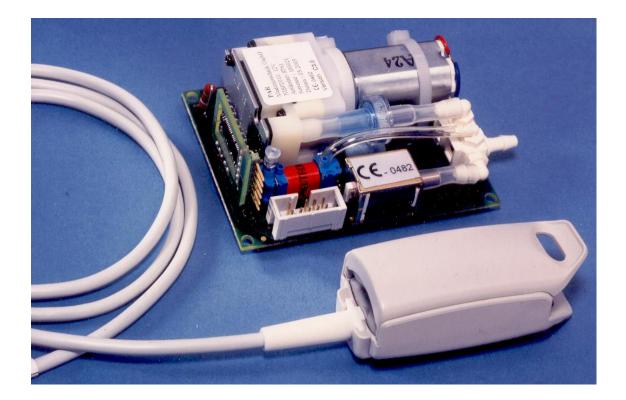
Technical Description NIB#2010 with SpO2 Doc.-Rev. 1.9–24.01.2017 Page 1 of 28

General 4	
Blood Pressure Part of NIBP2010 with SpO2 4	•
Pulse Oximetry Part of NIBP2010 with SpO2 4	
Mechanical Dimensions	
Technical Data (Specifications)	
Blood Pressure Part of NIBP2010 with SpO27	
Pulse Oximetry Part of NIBP2010 with SpO2	Ì
Transport and Storage Conditions	
Standards	
Measuring Modes of the Blood Pressure Part9	l
Safety/Calibration of the Blood Pressure Part	ł
Hardware Interface	ł
Serial Transmission	ſ
Interface Connector	I
DIL-Switch10	I
Software Interface of the Blood Pressure Part11	
Explanation of Terms	
General Conventions	
Checksum	
Protocol Direction from Monitor to NIBP2010 with SpO212	
General Conventions	
Commands	
Abort Command	
Software Reset Command15	
Timing and Error Correction15	
Direction from NIBP2010 with SpO2 to Monitor16	
General Conventions	1
Initialization Message	1
Cuff Pressure Transmission	1
End of Cuff Pressure Transmission	2
Status Transmission	i
Error Messages	I
Manometer Mode (extended version)	
Manometer Mode (short version)	
Leakage Test	ļ

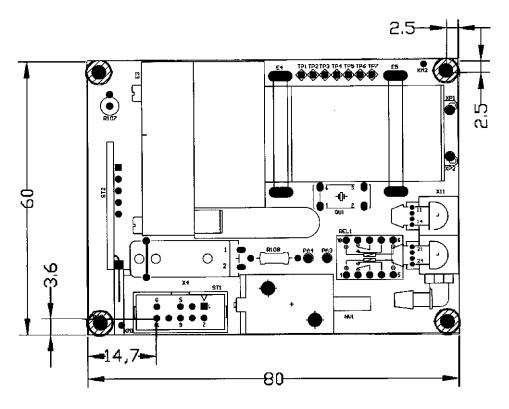
General	
SpO2 - Send Protocol	
Identification	
Pulse Wave	
Information	
Quality	
Gain	
SpO2 - Receive Protocol	28

General

This document describes and defines specifications for the NIBP2010 OEM Blood Pressure Board with SpO2.


Blood Pressure Part of NIBP2010 with SpO2

- New power down modus and resistant against artifacts
- CE-certification of the NIBP2010 Module
- the NIBP2010 operates very reliably and extremely patient-safe in the adult and neonatal mode (dual safety circuits for pumps, valves and pressure sensors)
- the accuracy and reproducibility of the measuring results is very good and has been demonstrated by extensive clinical tests:
 - the uniformity of results in the neonatal mode is very high through calibration with arterial reference measurements (clinical trials in the Charité hospital Berlin)
 - in the adult mode accuracy was achieved through a large number of test candidates with comparative measurements (over 80 test persons each with 6 readings parallel to sphygmomanometer evaluation)
- the measuring time (patient involvement/contact) is short
- the generated noise has been reduced to a minimum
- the long life span of the valves and pumps employed has been achieved by using tried and tested parts
- artifacts are already "recognized" during the measuring sequence and effect a further validation of the readings
- automatic adjustment of the start pressure depending on data of a previous measuring
- automatic measuring mode, in which the repetition of measurements is controlled by a counter. The user can select between various times of repetition
- continuous mode, in which measurements will be carried out so much as possible within 5 minutes
- determination of the heart rate from the oscillations transferred by the cuff
- Software compatible to NIBP2000


Pulse Oximetry Part of NIBP2010 with SpO2

- The SpO2 features pulse oximetry technology in a very small and low powered design.
- The board consists of a multilayer PCB with surface-mounted components with a total size of 77 x 65 x 12 mm.
- A new enhanced split-pulse-wave algorithm with fuzzy logic control technology is integrated and provides high quality and best results.
- The SpO2 connects to transducers specified and provides oxygen saturation, pulse rate, quality signal, pulse waveform and other output information via the serial digital interface.

- The SpO2 operates on a split-pulse-wave algorithm. Additional plausibility calculations provide exact measurements.
- Depending on the application 3 different response modes are available: sensitive, normal and stable. The sensitive mode provides best accuracy with sensitive artefact rejection. To achieve very stable values the stable mode is offered. During each mode fast changes of oxygen saturation and pulse rates will be detected and transmitted.
- Every second current values of oxygen saturation and pulse rate will be transmitted for all response modes.
- The SpO2 requires certain signal quality for high accuracy. Several criterias are implemented to detect the human pulse wave forms. Signals which do not meet these criteria, e.g. due to high motion artefacts, provide a low detection quality.
- For each measurement a quality signal is given to evaluate the measured oxygen saturation and pulse rate. This quality reaches from 0 to 10 and indicates the degree of artefacts.

Mechanical Dimensions

Technical Data (Specifications)

Mechanical data:	see board drawing Module dimensions: 80 x 60 x max 25 mm (1 x w x h) One 10-pin twin-row plug for all connections Weight 115g
Attachment:	four M2.5 screws in the corners of the PCB
Operating voltage:	+5 VDC (4.8VDC to 7.0VDC) or +12 VDC (11.0VDC to 13.0VDC)
Max. operating current:	750mA (5VDC) or 530mA (12VDC)
Temperature range:	0°C to 55°C
Relative humidity:	95% max, no condensing
Operating mode:	non-supervised continuous operation

Blood Pressure Part of NIBP2010 with SpO2

Type of measurement:	oscillometric		
Pressure range:	0300 mmHg		
Measurement ranges: pSYS: pDIA: pMAP:	adults 25 - 280 mmHg 10 - 220 mmHg 15 - 260 mmHg	neonates 20 - 150 mmHg 5 - 110 mmHg 10 - 130 mmHg	

Accuracy:

Teeuruey.				
	Measured	Required according to international standards		
Pressure transducer accuracy	±1 mmHg	max. ± 3 mmHg		
Measurement accuracy Mean deviation	< 1,7 mmHg	max. \pm 5 mmHg		
Measurement accuracy Standard deviation	< 5,6 mmHg	max. 8 mmHg		
Resolution:	1 mmHg			
Leakage rate of the system	< 3 mmH	g / minute		
Overpressure limits:	300 mmH	300 mmHg adult mode and 150 mmHg neonatal mode		
Shutdown and pressure rele after exceeding (first fault condition):		330 mmHg adult mode and 165 mmHg neonatal mode		
Time required for BD measurement:	max.: adu	typical (normal) 20s max.: adults 90s, max.: neonates 60s		
Heart rate range/accuracy:	302401	30240 bpm / ±2 bpm		
MTBF :	250.000 c	250.000 cycles of blood pressure measurements		
Interface to monitor:	default 19 various pr	RS232-TTL level, default 19200 baud, also other baud rates available, various protocols available (e. g. CAS, Colin), hardware reset		
Calibration interval:	2 years	ars		

Pulse Oximetry Part of NIBP2010 with SpO2

O ₂ -Saturation range:	0 - 100 %	
O ₂ -Saturation accuracy:	$\begin{array}{l} SpO_2 > 85 \ \% \ \pm 1,5 \ \% \\ 75 \ \% < SpO_2 < 85 \ \% \ \pm 2,0 \ \% \\ 50 \ \% < SpO_2 < 75 \ \% \ \pm 3,0 \ \% \end{array}$	
Heart rate range/accuracy:	30 - 250 bpm / \pm 2 %	
Quality range:	10 (low) - 0 (high)	
Response modes:	sensitive, normal, stable; adjustable by monitor; default: normal	
Alarms:	sensor disconnected, finger off, signal low, error messages. All alarms are detected in the module and reported to the monitor via the communication link.	
Transmission:	resolution: saturation: 1 Hz pulse rate: 1 Hz quality signal: 1 Hz pulse wave: 100 Hz	
Digital filter:	50/60 Hz and 100 Hz neon light	
Temperature:	0 to 45°C	
Isolation serial interface:	input via opto coupler (optional).	

Transport and Storage Conditions

Temperature range:	-20° C to $+70^{\circ}$ C
Relative humidity:	95% max, no condensing

Standards

EN 60601-1 + A1 + A2	EN 1060-1
EN 60601-1-2	EN 1060-3
EN 55011, Class B	EN 1060-4
EN 60601-2-30	ANSI/AAMI SP-10

Measuring Modes of the Blood Pressure Part

The NIBP2010 module carries out blood pressure measurements at adults and neonates according to the oscillometric measuring method in 3 different modes.

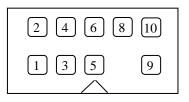
Manual mode: The user decides when he would like to trigger a measuring and starts a single measuring. If a current regular measuring isn't finished yet, a new manual measuring is carried out after completion of the regular. Cycle mode: The user selects the temporal distance between the single measurements and starts a measuring row. The module provides automatically a minimum distance of 30 seconds between the single measurements. This mode can be stopped with a command (Abort Command "X"). Continuous mode: The user starts this mode and the module carries out so many measurements within 5 minutes as possible. A distance of 5 seconds is provided between the single measurements. This mode can be stopped with a command (Abort Command "X"). After 5 minutes the module leaves the continuous mode automatically and goes into a standbymode.

In all three modes the user selects the start inflation pressure for the first measurement. For the following measurements (in the cycle and continuous mode) the module sets automatically the inflation pressure to the last measured systolic value plus 15 mmHg.

Safety/Calibration of the Blood Pressure Part

The safety for the patient and user is achieved by several measures at the NIBP2010 module.

- Two independent pressure measuring channels on the circuit board are permanently compared against each other.
- There are two valves on the module, if the deflation valve fails, a second valve (safety valve) deflates the cuff. The function of the safety valve is supervised separately from the deflation valve.
- The driving circuits of the pump are supervised.
- After power on or reset the module the program is verified by a self test with calculating a checksum.
- The program flow is supervised by a watchdog.


In order to achieve a steady safety, effectiveness and accuracy the user should let calibrate the module every two years. The calibration can be done automatically with commands or manually. A detailed description for calibrating the module is available.

Hardware Interface

Serial Transmission

The normal connection to the board is done via serial, asynchronous communication with a baudrate of 19200 baud. The interface lines operate on TTL voltage levels (0 and 5 volts). A bidirectional connection is necessary, because commands like cycle mode or start a measurement have to be transmitted to the module.

Interface Connector

Pin 1	Power supply Pump : + 5VDC	or	+ 12VDC
Pin 2	Power supply Pump : + 5VDC	or	+ 12VDC

- Pin 3 Power supply Logic :+5VDC or +12VDC
- Pin 4 GND
- Pin 5 NC
- Pin 6 NC

Pin 8 Reset (TTL - Logic, High or Low, changeable)

Pin 9 RxD, TTL – Logic Pin 10 TxD, TTL – Logic

DIL-Switch

The position of the 8 switches depend on the operation voltage and on the hardware reset logic:

SW1 and SW3 have always to be off

Operating voltage 5 V:	SW2 = on	SW4 = on	SW5 = on
Operating voltage 12 V:	SW2 = off	SW4 = off	SW5 = off
Reset logic active high: Reset logic active low:	SW6 = on $SW6 = off$	SW7 = off $SW7 = on$	SW8 = off $SW8 = on$

Software Interface of the Blood Pressure Part

The following description is valid for firmware version 3.41 and higher. It is described the standard protocol. There are also other protocols available.

Explanation of Terms

ASCII	Character Standard
Frames	Character strings which are exchanged as commands or messages between the
	computers.
Cycle Mode	The measuring unit starts automatic readings. The user is free to select the
	readout intervals. This mode is controlled solely by the monitor.

General Conventions

All NIBP2010 commands and messages begin with a Start of Text character, $\underline{STX} = 0\underline{xFD}$, and close with an End of Text character, $\underline{ETX} = 0\underline{xFE}$. In this document the designation for Start of Text is: $\langle STX \rangle$ and End of Text $\langle ETX \rangle$.

- The module sends every 10msec. data from SpO2 (see "Software Interface of the SpO2" at page 17). This data flow can be interrupted by "blood pressure frames" at each time. All NIBP2010 "blood pressure frames" come as a block, between STX and ETX.
- The blood pressure frames from NIBP module to monitor are terminated by a carriage return, CR = ASCII 13.

Checksum

The checksum is achieved via a modulo 256 summation through all the previous characters of both checksum characters in the corresponding frame (string). The STX character is not included.

Protocol Direction from Monitor to NIBP2010 with SpO2

General Conventions

The measuring unit is controlled by the monitor via command frames. Should NIBP2010 receive unexpected commands these will be ignored. In addition to this, false or unknown commands as well as violations of the timeout criteria will abort the current session in progress. All data and commands are verified via checksum.

Commands

A command consists of an 8 ASCII character frame. This includes a Start of Text and an End of Text character as well as 2 characters for the checksum.

Frame Schema:

Char 1	Char 2	Char 3	Char 4	Char 5	Char 6	Char 7	Char 8
STX	c0	c1	;	;	x0	x1	ETX

STX (Start of Text) = 0xFD,

c0 and c1	= command code (2 ASCII characters. Range of values 0 - 99)
; and ;	= 2 times semicolon
x0 and x1	= checksum (2 ASCII characters)

ETX (End of Text) = 0xFE,

Example for command code 01 (Start measuring) (all characters in inverted commas):

<STX> "0" "1" ";" ";" "D" "7" <ETX>

the same in hex-notation:

0xFD 0x30 0x31 0x3B 0x3B 0x44 0x37 0xFE

Command Code	Checksum	Function
00	D6	Reserve
01	D7	Start measurement with a start pressure
		calculated by the module ¹⁾
02	D8	Reserve
03	D9	Select manual measuring mode
04	DA	Select cycle mode 1 minute
05	DB	2
06	DC	3
07	DD	4
08	DE	5
09	DF	10
10	D7	15
11	D8	30
12	D9	60
13	DA	90
14		
14	DB	Select manometer mode
16	DD	Software reset
17	DE	Leakage test
18	DF	Request data from module ²)
36	DF	Set start pressure to 60mmHg (only neonatal)
37	E0	Set start pressure to somming (only neonatal) Set start pressure to 80mmHg (only neonatal)
19	E0 E0	Set start pressure to 100mmHg (only neonatal)
20	D8	Set start pressure to 120mmHg (only neonatal)
20	Do	Set start pressure to 120mming (only neonatar)
60	DC	Set start pressure to 80mmHg (only adult)
61	DD	Set start pressure to 100mmHg (only adult)
62	DE	Set start pressure to 120mmHg (only adult)
21	DP D9	Set start pressure to 120mmHg (only adult)
21 22	DA	Set start pressure to 140mmHg (only adult)
22 23	DB	
33	DB	Set start pressure to 180mmHg (only adult)
33	DC	Set start pressure to 200mmHg (only adult)
34	DD DE	Set start pressure to 220mmHg (only adult)
33		Set start pressure to 240mmHg (only adult)
24	DC	Select adult measuring mode
24 25	DD	Select adult measuring mode
25		Select neonatal measuring mode
27	DF	Select continuous mode and start measurement
		select continuous mode and start measurement
	1	

PAR	Medizintechnik	GmbH
-----	----------------	------

Command Code	Checksum	Function
29	E1	Version number (EPROM) – NIBP2010
30	D9	SpO2 datastream <u>off</u>
31	DA	SpO2 datastream <u>on</u>
32	DB	Change baudrate on 9600
51	DC	Extended PAR mode

¹⁾ For the first measurement the start pressure is 160 mmHg (adult) and 120 mmHg (neonate), unless a "set start pressure" command is sent before. For a following measurement the start pressure is calculated to "last systolic value plus 15 mmHg".

²⁾ Important: wait for an answer of the module before sending another command

Remarks

- It is not recommended to send commands during blood pressure measuring or leakage test or during the manometer mode.
 Exception: Abort Command ASCII X (see "Abort Command")
- Command "30": the baudrate keep at 19200 baud, STX = 0xFD and ETX = 0xFE.
- Command "32": these command can be sent, if before the SpO2 plethysmogram curve was switched off (see "SpO2 Receive Protocol").

Abort Command

Regardless of the operational mode, the session can be terminated by sending (the) "X" (character). The measuring unit immediately reverts to the mode : Standby. The pneumatic system discharges.

Example : "X" or : <STX>"X" <ETX>

Software Reset Command

The software reset command does the same as the power-on reset and the hardware reset. The software starts to run at the beginning. The module is set to the adult mode and the start pressure is set 160 mmHg. Finally the module is in the standby mode and is ready to receive and answer further commands, e. g. start a measurement.

If the module has detected an incorrect checksum of the program (then the module transfers the error message M15, see chapter "Error Messages"), the software reset does not work. In this case the module resets only by a power-on reset or hardware reset.

Timing and Error Correction

During all operational modes the excess pressure detection and system error detection are activated. In the following cases the measuring unit reacts as under the item "abort command"

Reception of:

- Mutilated frames
- Erroneous checksum
- Unknown command
- Violation of timeout criterion.
- The period between two characters of a receive frame exceeds 10ms.

Direction from NIBP2010 with SpO2 to Monitor

General Conventions

There are three types of frames which, in the different situations, are generated by the NIBP2010.

- Cuff pressure transmission (5 times per second)
- End of cuff pressure transmission
- Status transmission

Depending on the operational status the status frame shows the version number or the error code in message code (see under remarks of the various points).

Initialization Message

On power up the NIBP module always generates a status frame within a few seconds. Immediately thereafter the monitor can communicate with the module.

Frame example: <STX>,S0;A0;C00;M10;P-----;R---;T ;;AF<ETX>CR

Cuff Pressure Transmission

This frame is permanently displayed during a current measuring.

Basic frame structure (real ASCII in inverted commas): <STX>, d0, d1, d2, "C", c0, "S", a0,<ETX>, CR

Explanation of dummies: STX = Start of Text ETX = End of Text CR = carriage return

d0, d1, d2 = 3 ASCII digits which represent the current cuff pressure. Leading zeros are transmitted.

The 'C'aution bit "c0" is used during a current measuring for the display of the cuff and corresponding measuring mode:

c0 = "1" module recognized the neonatal cuff in adult operation c0 = "2" module recognized the adult cuff in neonatal operation c0 = "0" correct cuff

The "**S**"tatus bit "a0" displays the current operational mode:

a0 = "3" measuring a0 = "4" manometer operation a0 = "7" leakage test

Example: <STX>035C0S3<ETX>CR

<stx></stx>	start of Text: "0xFD"
035	current cuff pressure 35 mmHg
C0	correct cuff is connected
S3	module is in the measuring mode
<etx></etx>	end of Text: "0xFE"
CR	carriage return

End of Cuff Pressure Transmission

This message is generated after the cuff pressure transmission has been completed and thus after the blood pressure has been measured. The measuring unit then reverts to standby.

Frame structure (real ASCII in inverted commas) : <**STX>''999''<ETX>CR**

Status Transmission

After booting, the leakage test and the measurement, it may be recognized from this frame, whether it was a successfully or unsuccessfully completed action. This is expressed in the error code field.

The status is displayed on request by the monitor by sending command code 18. Frame structure (real ASCII in inverted commas, all lines consecutive) :

<STX>, "S", a0, ";", "A", b0, ";", "C", c0, c1, ";", "M", d0, d1, ";", "P", e0, e1, e2, e3, e4, e5, e6, e7, e8, ";", "R", f0, f1, f2, ";", "T", g0, g1, g2, g3, ";", ";" h0, h1, <ETX>CR

Explanation:

- STX = Start of Text
- ETX = End of Text
- CR = carriage return

a0 = ASCII digit

- a0 = "0" auto test in progress (immediately after reset)
- a0 = "1" waiting for commands (standby), cycle counter stopped
- a0 = "2" error (evaluation of error bits), cycle counter stopped
- a0 = "3" measuring in progress
- a0 = "4" manometer mode
- a0 = "5" initialization (immediately after reset) in progress
- a0 = "6" cycle-/continuous- mode
- a0 = "7" leakage test
- a0 = "8" reserve

b0 = **ASCII** digit for the operational mode

b0 = "0" adult mode

b0 = "1" neonatal mode

c0 and c1 = 2 ASCII digits for cycle mode in minutes.

c0-c1 = 00, no cycle selected

d0 and **d1** = 2 ASCII digits for messages (after reset 10 appears here)

- d0-d1 = 00 uninterrupted operation
- d0-d1 = 02 receiving invalid command
- d0-d1 = 03 uninterrupted operation
- d0-d1 = 06 cuff fitted too loosely or is not connected, time for pumping exceeded
- d0-d1 = 07 cuff leakage
- d0-d1 = 08 pneumatics faulty
- d0-d1 = 09 measuring time exceeded, current pressure smaller than the lower limit of diastole, too less oscillations detected
- d0-d1 = 10 systolic and diastolic value are outside the pressure range
- d0-d1 = 11 too strong movement artefact
- d0-d1 = 12 maximum pressure exceeded
- d0-d1 = 13 two saturated oscillation amplitudes are detected
- d0-d1 = 14 leakage during the leakage test
- d0-d1 = 15 system error
- e0 to e8 = each 3 ASCII digits represent the values for pSystole, pDiastole, pMean. If the last measurement did not succeed in determining values, these digits will reported as dashes.
- f0, f1, f2 = 3 ASCII digits for the heart rate. If there is no heart rate determined, these digits will be reported as dashes.
- **g0 to g3** = 4 ASCII digits for the period in seconds until the next measurement starts (only in cycle- or continuous mode). If the cycle- or continuous mode has finished or is not active, 4 blanks are displayed.
- **h0 and h1** = ASCII digits for the checksum

Example :

<STX>S1;A0;C03;M00;P125090080;R075;T0005;;D2<ETX>CR

<stx></stx>	start of Text: "0xFD"
S1	waiting for commands, module is in the standby mode,
A0	adult mode,
C03	cycle mode with 3 minutes,
M00	uninterrupted operation, no errors,
125	last pSystole: 125mmHg,
080	last pDiastole: 80mmHg,
090	last pSystole: 90mmHg,
R075	last heart rate: 75mmHg,
T0005	the next measurement begins in 5 seconds,
D2	checksum.
<etx></etx>	end of Text: "0xFE"
CR	carriage return

Error Messages

If a fault appears during or between the blood pressure measurements, an error message will be sent upon request. The following error messages can occur:

M00,

M03 = Uninterrupted operation

The module continues its measuring in the selected mode.

M02 = Receiving invalid command

An invalid command can be

- an interrupted command or
- a command with a wrong format or
- a wrong timing of the bytes within a command

After appearing M02 the module resets automatically, then the module goes into the standby-mode and is ready to receive and answer further commands.

M06 = 1. Cuff fitted too loosely or is not connected 2. Time for pumping exceeded

This error message occurs when inflating, a pressure must achieve at least 20 mmHg after 20 sec., and after 60 sec. the final pressure must be reached.

- M07 = Cuff leakage (including sudden occurrence) Appears when inflating.
- M08 = Pneumatics faulty, because of:
 - 1. Faulty slow loss of pressure
 - Occurs, if the pressure deflation is too small in the deflation phase (e. g. because of a faulty deflation valve or because of a blockage).
 - 2. Faulty high loss of pressure Occurs, if the pressure deflation is too big (> 50 mmHg e.g. because of a leakage).3. Offset pressure has changed too much.
 - The offset pressure is measured always shortly before the pump starts for a new blood pressure reading. M08 occurs if this offset pressure has changed too much against the initial offset reading (the initial offset pressure reading is done after power on the module or after a hardware reset or after a software reset, therefore it is recommended to eliminate this error with a reset).

M09 = 1. Measuring time exceeded (adult: 90 sec/neo: 60 sec)

2. The current pressure is smaller than the lower measuring range limit for the diastole pressure limit

3. Too less oscillations detected (cuff incorrectly fitted)

M10 = Systolic and diastolic value are outside the pressure range (observed when deflating).

- M11 = Too strong movement artefacts
- M12 = The permitted maximum pressure is exceeded (Adult: 300 mmHg, Neo: 150 mmHg, in accordance with IEC limits)
- M13 = Two saturated oscillation amplitudes are detected
- M14 = Leakage during the leakage test
- M15 = System error, because of:
 - 1. Faulty safety valve
 - 2. Pump driving circuits faulty
 - 3. Pressure channel faulty
 - 4. In this leakage test the pressure increases for 30 seconds
 - 5. Check sum of the program incorrect

The check sum will be checked after the module is powered on or after a hardware reset or after a software reset. If the check sum is incorrect the module goes into the sleep mode. The module is <u>not</u> ready to receive and answer further commands, therefore a blood pressure measurement is <u>not</u> possible and a software reset will <u>not</u> work.

The module will leave the sleep mode after power off/on or after a hardware reset.

At the appearance of M02 to M15 (except case 5. of M15) the NIBP2000 module goes into the standby-mode. The module is ready to receive and answer further commands.

Manometer Mode (extended version)

For this manometer mode send the commands:

- 1. <STX>51;;DC<ETX>
- 2. <STX>14;;DB<ETX>

The module answers with the following "Status Transmission":

```
<$TX>,$4;A0;C00;M00;P-----;R---;T ;;B2<ETX>CR
```

Then the module transmits the offset pressure.

Example: offset for channel 1: 70 steps and channel 2: 75 steps

"Offset [0]: 70 [Stufen] Offset [1]: 75 [Stufen] <CR>"

➤ "Stufen" means "steps".

The offset pressure range should be between 50 and 90 steps.

After sending the **Abort Command: <X>**, the module sends the pressure of channel 1 and channel 2. Connect the pressure indicator and pump up to pressure around 250 mmHg.

Example: for 250 mmHg "<CR> 1. : 250 [mmHg] 2. : 250 [mmHg]"

Remark : If pressing over 300 mmHg the valves will be opened and the module leaves the manometer mode by sending the "End of Cuff Pressure Transmission"- message. If the module receives the command "Request data from module" the module will answer with a "Status Transmission", which shows an error (S2: an error has occurred, M12: the error is maximum pressure exceeded, see "Technical Description NIBP2010" chapter "Error messages" and chapter "Status Transmission").

Leaving the manometer mode:

After sending the **Abort Command:** *<***X***>* once more, the module leaves the manometer mode by answering with the "End of Cuff Pressure Transmission"-message.

After 10 min without sending the Abort Command the module will leave the manometer mode automatically also by answering with the "End of Cuff Pressure Transmission"-message.

After leaving the manometer mode and before sending new commands, a "Power off and on" or a "Hardware-Reset" or a "Software-Reset" has to be done. Notice, that the cuff pressure is 0 mmHg at this moment.

Manometer Mode (short version)

For the manometer mode (short version) send the command:

<STX>14;;DB<ETX>

The module sends permanently the "Cuff Pressure Transmission" - string, according to the pressure only of channel 1.

Remark : If pressing over 300 mmHg the valves will be opened and the module leaves the manometer mode by sending the "End of Cuff Pressure Transmission"- message. If the module receives the command "Request data from module" the module will answer with a "Status Transmission", which shows an error (S2: an error has occurred, M12: the error is maximum pressure exceeded, see "Technical Description NIBP2010" chapter "Error messages" and chapter "Status Transmission").

Leaving the manometer mode:

After sending the **Abort Command:** *<***X***>*, the module leaves the manometer mode by answering with the "End of Cuff Pressure Transmission"- message.

After 10 min without sending the Abort Command the module will leave the manometer mode automatically also by answering with the "End of Cuff Pressure Transmission"-message.

After leaving the manometer mode and before sending new commands, a "Power off and on" or a "Hardware-Reset" or a "Software-Reset" has to be done. Notice, that the cuff pressure is 0 mmHg at this moment.

Leakage Test

Wind a cuff around a solid body with a diameter of about 7,5cm and connect it with NIBP2010.

Send the command for leakage test: **<STX>17;;DE<ETX>**.

NIBP2010 inflates to 200mmHg and after 60 Seconds NIBP2010 sends the "End of Cuff Pressure Transmission"- message, leaves the leakage test and returns to the standby mode. In order to get a result of the leakage test, send to the module the command "Request data from module". The module will answer with one of the following "Status Transmission":

<\$TX>,\$1;A0;C00;M00;P-----;R---;T ;;AF<ETX>CR

- S1: the leakage test has detected no leakage error
- M00: the result of the leakage test is **ok** (leakage is \leq 3 mmHg/minute)

<\$TX>,\$2;A0;C00;M14;P-----;R---;T ;;B5<ETX>CR

- S2: the leakage test has detected a leakage error
- M14: the result of the leakage test is **not ok** (leakage is > 3 mmHg/minute)

Software Interface of the SpO2

General

Every second a new pulse rate, oxygen saturation and quality value is transmitted. Pulse wave values (7 Bit, 0 - 127) are sent with 100 Hz.

SpO2 - Send Protocol

Identification

A command byte identifies the values. The following command bytes are defined:

pulse wave	0xF8
SpO ₂	0xF9
pulse rate	0xFA
information	0xFB
quality	0xFC
gain	0xF4

Note: The commands for pulse wave and information are active as long as no other command is sent !!

Pulse Wave

After the command byte 0xF8 the pulse wave is sent by 7 data bits ranging from 0 to 127 and representing the amplitude of the plethysmogram curve. The pulse wave is sent as the inverse plethysmogram curve.

Information

The information is followed by one of the following bytes:

STATUS OK	0x00	after removing failures
SENSOR_OFF	0x01	probe disconnected
FINGER_OFF	0x02	no finger in the probe
SIGNAL_LOW	0x03	no analysis possible, i.e. very low perfusion or strong motion artefacts; if no pulse is available weak signal alarm is provided after 15 seconds
Pulse_Detected	0x04	proper pulse wave is detected (optional)
'S' ; code number	0x53	sent as soon as the module is connected to power followed by an 18 bytes long code number
'E' ; error code	0x45	Followed by 3 bytes: # ; 0x0D ; 0x0A # is an error code

The following error eoe	ies (") may see	
System	0x01	wrong EPROM checksum
	0x02	RAM cell error
	0x03	RAM address error
Code number	0x0B	code number device not present
	0x0C	code number CRC error
Sensor	0x0D	current device is not a code device
	0x15	wrong code number
	0x33	red LED defective
	0x34	infrared LED defective
	0x35	photo diode defective
	0x37	both LED's or photo diode defective

The status "OK" is sent after removing failures.

If a particular situation occurs the information byte is transmitted followed by an information about the corresponding cause.

Example: The probe is disconnected. The bytes "FB, 01" will be sent. After reconnecting the sensor, the information "OK" is sent as "FB, 00".

If no failure occurs then the information "OK" is not transmitted !

Quality

The quality of the signal is defined as follows:

Values 0 to 10	0x00	0x00 up to 0x0a		
Meaning:	0: 10:	pulse rate and SpO2 are stable, quality = high pulse rate and SpO2 are instable, quality = low		

Gain

The gain is followed by a second byte stating amplification factor of the pulse wave. A gain information is sent as soon as the gain factor changes.

Example for a data stream:

0xF9 0x50 0xFA 0xA0 0xFB 0x03 0xFC 0x0a 0xF8 0x03 0x05 0x09 0x0fmeans:

0xF9 SpO2	80 %	0x50
0xFA Pulse rate	160 bpm	0xA0
0xFB Information (status)	3	0x03 low signal
0xFC Quality	10	0x0a instable values
0xF8 Pulse wave	3, 5, 9,	0x03, 0x05, 0x09,

The same example for a data stream with blood pressure:

0xF9 0x50 0xFA <<u>STX></u>, d0, d1, d2, ''C'', c0, ''S'', a0, <<u>ETX></u>, CR 0xA0 0xFB 0x03 0xFC

0x0a 0xF8 0x03 0x05 0x09 0x0f...

see also "Cuff Pressure Transmission".

SpO2 - Receive Protocol

The SpO2 can receive commands for adjusting the response mode and selecting the pulse wave on/off.

First the command byte 0xFB has to be sent followed by one of the following bytes:

0x30	ʻ0'	Examine the selected response mode
0x31	'1'	Setting the response mode to sensitive
0x32	'2'	Setting the response mode to normal
0x33	' 3'	Setting the response mode to stable
0x70	ʻp'	Setting the plethysmogram curve ON/OFF
0x76	'v'	Requesting the software version
0x52	'R'	Generating a hardware reset
0x72	ʻr'	Generating a software reset

Example: Sending the bytes 0xFB '0'

The SpO2 responds by the code 0xFB followed by '1', '2' or '3' depending on the adjusted sensitivity mode.