BeneVision N17/N15/N12

Patient monitor

Physi	cal Specifications	
Weight		Standard configuration, excluding modules,
		recorder, battery and accessories.
	N17:	7.3 kg (16.1 lbs)
	N15:	5.4 kg (11.9 lbs)
Size	N12:	4.1 kg (9.1 lbs)
Size	N17:	466 x 355 x 210 mm
	N15:	396 x 313 x 193 mm
	N12:	313 x 290 x 161 mm
Displa		
Type	•	Medical-grade color TFT LCD, capacitive touch
		screen, support multi-touch operation.
		178 ° viewing angle
Scree	n & Resolution	
	N17:	18.5-inch, 1920 x 1080 pixels (FHD)
	N15:	15.6-inch, 1920 x 1080 pixels (FHD)
Mayo	N12: forms	12.1-inch, 1280 x 800 pixels (WXGA)
wave	IOIIIIS	N17: Up to 12 waveforms N15: Up to 10 waveforms
		N12: Up to 8 waveforms
ECG		
Meet	standards of IEC 606	01-2-27 and IEC 60601-2-25.
Lead S		Automatic 3/5/6/12 - lead recognition
	3-lead:	I, II, III
	5-lead:	I, II, III, aVR, aVL, aVF, V
	6-lead:	I, II, III, aVR, aVL, aVF, Va, Vb
~	12-lead:	I, II, III, aVR, aVL, aVF, V1 to V6
	o Speed	6.25 mm/s, 12.5 mm/s, 25 mm/s, 50 mm/s
	Selection	x 0.125, x 0.25, x 0.5, x 1, x 2, x 4, auto
	form format Signal Range ±8m	Standard, Cabrera
•	5 5	Tolerance ± 500 mV
Bandy		
	Diagnostic Mode:	0.05 to 150 Hz
	Monitor Mode:	
	Surgical Mode:	1 to 20 Hz
	ST Mode:	0.05 to 40 Hz
	High Freq Cut-off (f	for 12-lead ECG analysis):
CLADD		350 Hz, 150 Hz, 35 Hz, 20 Hz selectable
CMRR	Diagnostic:	> 90 dB
	Monitor, Surgical, S	
	morntor, surgicul, s	> 105 dB (with notch filter on)
Pace o	detection	
	Amplitude:	$\pm 2 \text{ mV}$ to $\pm 700 \text{ mV}$
	Width:	0.1 to 2 ms
	Rise time:	10 to 100 μs (without overshoot)
	rillator Protection	Withstand 5000VAC (360J) defibrillation
	Recovery Time	\leq 5 seconds
	ecovery time	$\leq 10 \text{ s}$
		12-lead ECG algorithm. -lead ECG monitoring analysis algorithm.
		s are from MPM Platinum module.)
Heart		sale nom minimi minimi module.)
	urement Range	
	Adult:	15 to 300 bpm
	Pediatric/Neonate:	
Accur		\pm 1 bpm or \pm 1%, whichever is greater.
Resolu		1 bpm
	thmia Analysis	
Patier		Adult/Pediatric/Neonate.
Monit	ored Arrhythmias	Asystole, VFib/VTac, VTac, Vent. Brady, Extreme
		Tachy, Extreme Brady, Vrhythm, PVCs/min,
		Pauses/min, Couplet, Bigeminy, Trigeminy, R on T, Run PVCs, PVC, Tachy, Brady, Missed Beats, PNP,
		PNC, Multif. PVC, Nonsus. VTac, Pause, Irr. Rhythm,
		AFib.
ST Se	gment Analysis	
Patier		Adult/Pediatric.
Range	2	- 2.0 to + 2.0 mV (RTI)
Accur	асу	\pm 0.02 mV or \pm 10%, whichever is greater
. .		(-0.8 to + 0.8 mV)
Resolu	ution	0.01 mV

QT Analysis Patient

Parameters QT, QTc, ΔQTc QTc Formula Range QT/QTc: 200 to 800 ms QT-HR: QT Accuracy ± 30 ms Resolution QT 4 ms; QTc 1 ms Respiration Range 0 to 200 bpm Resolution 1 rpm Apnea Alarm Time Accuracy 0 - 120 rpm: ±1 rpm 121 - 200 rpm: $\pm 2 \, rpm$ Lead **Pulse Oximetry** Meet standards of ISO 80601-2-61. Module 0 to 100 % Range Resolution 1% Accuracy Mindray/Nellcor: Masimo: Perfusion indicator (PI) Pitch Tone Yes Dual-SpO₂ Pulse Rate Range Mindray/Nellcor: 20 to 300 bpm 25 to 240 bpm Masimo: Pulse Rate Accuracy Mindray: Nellcor: Masimo: ± 5 bpm (motion) PR Refresh Rate 1 sec Temperature Meet standard of ISO 80601-2-56. Method Thermal resistance Channels Up to 8 channels Selectable °C or °F Units of Measure Range 0 to 50 °C / 32 to 122 °F Resolution 0.1 °C, 0.1°F Accuracy **Refresh Rate** 1 sec Genius [™] 2 Tympanic Thermometer 33 to 42 °C / 91.4 to 107.6 °F ± 0.1 °C (environment temperature 25 °C, target temperature 36.7 to 38.9 °C) \pm 0.2 °C (environment temperature 16 °C, target temperature 33 to 42 °C) Resolution 0.1 °C, 0.1°F Response Time < 2 sec **Non-Invasive Blood Pressure** Meet standards of ISO 80601-2-30. Method Oscillometry Modes Manual, Auto, STAT, Sequence mmHg, kPa (user-selectable) Units of Measure 1 mmHg Resolution Systolic range Adult: 25 to 290 mmHg Pediatric: 25 to 240 mmHg Neonate: 25 to 140 mmHg Diastolic range 10 to 250 mmHg Adult: Pediatric: 10 to 200 mmHg 10 to 115 mmHg Neonate: Mean range

Adult/Pediatric/Neonate. Bazett, Fridericia, Framingham, or Hodges

Adult: 15 to 150 bpm Pediatric/Neonate: 15 to 180 bpm

10, 15, 20, 25, 30, 35, 40 sec

I, II, or auto (default: lead II)

Mindray, Masimo, Nellcor

± 2 % (70 to 100%, Adult/Pediatric:) ± 3 % (70 to 100%, Neonate) Unspecified (0 to 69%) ± 2 % (70 to 100%, Adult/Pediatric, non-motion) ± 3 % (70 to 100%, Neonate, non-motion) ± 3 % (70 to 100%, motion) Unspecified (0 to 69%) Yes, for Mindray/Masimo SpO₂ Yes, SpO₂, SpO₂b, ∆SpO₂

± 3 bpm (20 - 300 bpm) ± 3 bpm (20 - 250 bpm) ± 3 bpm (non-motion)

\pm 0.1 °C or \pm 0.2 °F (without probe)

Measurement Range Calibrated Accuracy

Adult: Pediatric:	15 to 260 mmHg
i eulatric.	15 to 215 mmHg
Neonate:	15 to 125 mmHg
Accuracy	
Max Mean E	5
Max Standar Cuff Deflation Tech	d Deviation: 8 mmHg
Initial Cuff Inflation	nique Step bleed
Adult:	80 to 280 mmHg (default: 160 mmHg)
Pediatric:	80 to 210 mmHg (default: 140 mmHg)
Neonate:	60 to 140 mmHg (default: 90 mmHg)
Over Pressure Prote	
Adult/ Pedia	5
Neonate: Max Measurement	$147 \pm 3 \text{ mmHg}$
Adult/Pediat	
Neonate:	90 sec
Assisting Venous Pu	
Pulse Rate Range	30 to 300 bpm
Pulse Rate Accuracy	\pm 3 bpm or \pm 3 %, whichever is greater
IBP	
Meet standard of IE	
Number Mossurement Pane	Up to 8 channels e -50 to 360 mmHg
Measurement Rang Resolution	1 mmHg
Accuracy	\pm 1 mmHg or \pm 2 %, whichever is greater (excluding
	sensor error)
Sensitivity	5 μV/V/mmHg
Impedance Range	300 to 3000 Ω
PPV Range	0 to 50 %
PAWP	Yes
ICP measurement	Support
Support waveforms Pulse Rate Range	25 to 350 bpm
Pulse Rate Accuracy	•
Cardiac Output	21 Spin of 21 %, whenever is greater
Method	Thermodilution
Measurement Rang	e 0.1 - 20 L/min
Resolution	0.1 L/min
Accuracy	± 0.1 L/min or $\pm 5\%$, whichever is greater
TB Range	23 to 43 °C / 73.4 to 109.4 °F
TB, TI Accuracy TB, TI Resolution	± 0.1 ℃ (without sensor) 0.1 ℃
PiCCO	0.1 C
Parameters	Measurement Range Coefficient of Variation
CCO	0.25 to 25.0 L/min ≤ 2%
C.O.	0.25 to 25.0 L/min ≤ 2%
GEDV	
	$40 \text{ to } 4800 \text{ ml} \leq 3\%$
SV	1 to 250 ml ≤ 2%
EVLW	1 to 250 ml ≤ 2% 10 to 5000 ml ≤ 6%
EVLW ITBV	1 to 250 ml ≤ 2% 10 to 5000 ml ≤ 6% 50 to 6000 ml ≤ 3%
EVLW ITBV (Coefficient of vari	1 to 250 ml $\leq 2\%$ 10 to 5000 ml $\leq 6\%$ 50 to 6000 ml $\leq 3\%$ ation is measured using synthetic and/or database wave
EVLW ITBV (Coefficient of vari forms (laboratory te	1 to 250 ml ≤ 2% 10 to 5000 ml ≤ 6% 50 to 6000 ml ≤ 3%
EVLW ITBV (Coefficient of vari	1 to 250 ml $\leq 2\%$ 10 to 5000 ml $\leq 6\%$ 50 to 6000 ml $\leq 3\%$ ation is measured using synthetic and/or database wavesting.) Coefficient of variation= SD/mean error.)
EVLW ITBV (Coefficient of vari forms (laboratory te TB Range	$\begin{array}{llllllllllllllllllllllllllllllllllll$
EVLW ITBV (Coefficient of vari forms (laboratory te TB Range TB, TI Accuracy TB, TI Resolution pArt/pCVP Range	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
EVLW ITBV (Coefficient of vari forms (laboratory te TB Range TB, TI Accuracy TB, TI Resolution pArt/pCVP Range pArt/pCVP Accurace	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
EVLW ITBV (Coefficient of vari forms (laboratory to TB Range TB, TI Accuracy TB, TI Resolution pArt/pCVP Range pArt/pCVP Accuracy ScvO ₂	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
EVLW ITBV (Coefficient of vari forms (laboratory to TB Range TB, TI Accuracy TB, TI Resolution pArt/pCVP Range pArt/pCVP Accurace ScvO ₂ Range	$\begin{array}{rrrr} 1 \text{ to } 250 \text{ ml} & \leq 2\% \\ 10 \text{ to } 5000 \text{ ml} & \leq 6\% \\ 50 \text{ to } 6000 \text{ ml} & \leq 3\% \\ ation \text{ is measured using synthetic and/or database wave string.} Coefficient of variation= SD/mean error.} \\ & 23 \text{ to } 43 \ ^{\circ}\text{C} \ / \ 73.4 \text{ to } 109.4 \ ^{\circ}\text{F} \\ & \pm 0.1 \ ^{\circ}\text{C} \ (\text{without sensor}) \\ & 0.1 \ ^{\circ}\text{C} \\ & -50 \text{ to } 300 \text{ mmHg} \\ y & \pm 1 \text{ mmHg or } \pm 2\%, \text{ whichever is greater} \\ & 0 \text{ to } 99\% \end{array}$
EVLW ITBV (Coefficient of vari forms (laboratory to TB Range TB, TI Accuracy TB, TI Resolution pArt/pCVP Range pArt/pCVP Accuracy ScvO ₂	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
EVLW ITBV (Coefficient of vari forms (laboratory to TB Range TB, TI Accuracy TB, TI Resolution pArt/pCVP Range pArt/pCVP Accuracy ScvO ₂ Range Accuracy	$\begin{array}{llllllllllllllllllllllllllllllllllll$
EVLW ITBV (Coefficient of vari forms (laboratory to TB Range TB, TI Accuracy TB, TI Resolution pArt/pCVP Range pArt/pCVP Accuracy ScvO ₂ Range Accuracy ICG	$\begin{array}{rrrr} 1 \text{ to } 250 \text{ ml} & \leq 2\% \\ 10 \text{ to } 5000 \text{ ml} & \leq 6\% \\ 50 \text{ to } 6000 \text{ ml} & \leq 3\% \\ ation \text{ is measured using synthetic and/or database wave string.} Coefficient of variation= SD/mean error.} \\ & 23 \text{ to } 43 \ ^{\circ}\text{C} \ / \ 73.4 \text{ to } 109.4 \ ^{\circ}\text{F} \\ & \pm 0.1 \ ^{\circ}\text{C} \ (\text{without sensor}) \\ & 0.1 \ ^{\circ}\text{C} \\ & -50 \text{ to } 300 \text{ mmHg} \\ y & \pm 1 \text{ mmHg or } \pm 2\%, \text{ whichever is greater} \\ & 0 \text{ to } 99\% \end{array}$
EVLW ITBV (Coefficient of vari forms (laboratory to TB Range TB, TI Accuracy TB, TI Resolution pArt/pCVP Range pArt/pCVP Accuracy ScvO ₂ Range Accuracy ICG Method	$\begin{array}{llllllllllllllllllllllllllllllllllll$
EVLW ITBV (Coefficient of vari forms (laboratory to TB Range TB, TI Accuracy TB, TI Resolution pArt/pCVP Range pArt/pCVP Accuracy ScvO ₂ Range Accuracy ICG Method HR Range C.O. Range SV Range	$\begin{array}{rrrr} 1 \text{ to } 250 \text{ ml} & \leq 2\% \\ 10 \text{ to } 5000 \text{ ml} & \leq 6\% \\ 50 \text{ to } 6000 \text{ ml} & \leq 3\% \\ \text{ation is measured using synthetic and/or database wave sisting.} Coefficient of variation= SD/mean error.) \\ 23 \text{ to } 43 ^\circ \text{C} / 73.4 \text{ to } 109.4 ^\circ \text{F} \\ \pm 0.1 ^\circ \text{C} & (\text{without sensor}) \\ 0.1 ^\circ \text{C} & \\ -50 \text{ to } 300 \text{ mmHg} \\ \text{y} & \pm 1 \text{ mmHg or } \pm 2\%, \text{ whichever is greater} \\ 0 \text{ to } 99\% \\ \pm 3\% (50 \text{ to } 80\%) \\ \hline \text{Thoracic electrical bioimpediance (TEB)} \\ 40 \text{ to } 200 \text{ bpm (ICG), accuracy } \pm 2 \text{ bpm} \\ 1.0 \text{ to } 15 \text{ L/min} \\ \text{5 to } 250 \text{ ml} \\ \end{array}$
EVLW ITBV (Coefficient of vari forms (laboratory to TB Range TB, TI Accuracy TB, TI Resolution pArt/pCVP Range pArt/pCVP Accurace ScvO2 Range Accuracy ICG Method HR Range C.O. Range SV Range Provides Monitorin	$\begin{array}{llllllllllllllllllllllllllllllllllll$
EVLW ITBV (Coefficient of vari forms (laboratory to TB, TI Accuracy TB, TI Accuracy TB, TI Resolution pArt/pCVP Range pArt/pCVP Accurace ScvO2 Range Accuracy ICG Method HR Range C.O. Range SV Range Provides Monitorin SVR, SVRI, PVR, PVR	$\begin{array}{llllllllllllllllllllllllllllllllllll$
EVLW ITBV (Coefficient of vari forms (laboratory to TB, TI Accuracy TB, TI Accuracy TB, TI Resolution pArt/pCVP Range pArt/pCVP Accuracy ScvO2 Range Accuracy ICG Method HR Range C.O. Range SV Range Provides Monitorin SVR, SVRI, PVR, PVR Continuous Cardia	1 to 250 ml $\leq 2\%$ 10 to 5000 ml $\leq 6\%$ 50 to 6000 ml $\leq 3\%$ ation is measured using synthetic and/or database wave isting.) Coefficient of variation= SD/mean error.) 23 to 43 °C / 73.4 to 109.4 °F $\pm 0.1 °C$ (without sensor) 0.1 °C -50 to 300 mmHg y ± 1 mmHg or $\pm 2\%$, whichever is greater 0 to 99 % $\pm 3\%$ (50 to 80 %) Thoracic electrical bioimpediance (TEB) 40 to 200 bpm (ICG), accuracy ± 2 bpm 1.0 to 15 L/min 5 to 250 ml g Parameters ACI, VI, PEP, LVET, TFI, TFC, HR, C.O., C.I., SV, SVI, LCW, LCWI, LVSW, LVSWI, STR, VEPT c Output Interface
EVLW ITBV (Coefficient of vari forms (laboratory to TB, TI Accuracy TB, TI Accuracy TB, TI Resolution pArt/pCVP Range pArt/pCVP Accurace ScvO2 Range Accuracy ICG Method HR Range C.O. Range SV Range Provides Monitorin SVR, SVRI, PVR, PVR	1 to 250 ml $\leq 2\%$ 10 to 5000 ml $\leq 6\%$ 50 to 6000 ml $\leq 3\%$ ation is measured using synthetic and/or database wave string.) Coefficient of variation= SD/mean error.) 23 to 43 °C / 73.4 to 109.4 °F $\pm 0.1 °C$ (without sensor) 0.1 °C -50 to 300 mmHg y ± 1 mmHg or $\pm 2\%$, whichever is greater 0 to 99 % $\pm 3\%$ (50 to 80 %) Thoracic electrical bioimpediance (TEB) 40 to 200 bpm (ICG), accuracy ± 2 bpm 1.0 to 15 L/min 5 to 250 ml g Parameters ACI, VI, PEP, LVET, TFI, TFC, HR, C.O., C.I., SV, SVI, , LCW, LCW, LVSW, LVSWI, STR, VEPT c Output Interface er Consistent with CCO-related parameters outputted
EVLW ITBV (Coefficient of vari forms (laboratory to TB, TI Accuracy TB, TI Accuracy TB, TI Resolution pArt/pCVP Range pArt/pCVP Accuracy ScvO2 Range Accuracy ICG Method HR Range C.O. Range SV Range Provides Monitorin SVR, SVRI, PVR, PVR Continuous Cardia	1 to 250 ml $\leq 2\%$ 10 to 5000 ml $\leq 6\%$ 50 to 6000 ml $\leq 3\%$ ation is measured using synthetic and/or database wave isting.) Coefficient of variation= SD/mean error.) 23 to 43 °C / 73.4 to 109.4 °F $\pm 0.1 °C$ (without sensor) 0.1 °C -50 to 300 mmHg y ± 1 mmHg or $\pm 2\%$, whichever is greater 0 to 99 % $\pm 3\%$ (50 to 80 %) Thoracic electrical bioimpediance (TEB) 40 to 200 bpm (ICG), accuracy ± 2 bpm 1.0 to 15 L/min 5 to 250 ml g Parameters ACI, VI, PEP, LVET, TFI, TFC, HR, C.O., C.I., SV, SVI, LCW, LCWI, LVSW, LVSWI, STR, VEPT c Output Interface
EVLW ITBV (Coefficient of vari forms (laboratory to TB Range TB, TI Accuracy TB, TI Resolution pArt/pCVP Range pArt/pCVP Accuracy ScvO ₂ Range Accuracy ICG Method HR Range C.O. Range SV Range Provides Monitorin SVR, SVRI, PVR, PVR Continuous Cardia Measured Parameter	1 to 250 ml ≤ 2% 10 to 5000 ml ≤ 6% 50 to 6000 ml ≤ 3% ation is measured using synthetic and/or database wave sisting.) Coefficient of variation= SD/mean error.) 23 to 43 °C / 73.4 to 109.4 °F ± 0.1 °C (without sensor) 0.1 °C -50 to 300 mmHg y ± 1 mmHg or ± 2 %, whichever is greater 0 to 99 % $\pm 3\%$ (50 to 80 %) Thoracic electrical bioimpediance (TEB) 40 to 200 bpm (ICG), accuracy ± 2 bpm 1.0 to 15 L/min 5 to 250 ml g Parameters ACI, VI, PEP, LVET, TFI, TFC, HR, C.O., C.I., SV, SVI, , LCW, LCWI, LVSWI, STR, VEPT c Output Interface er Consistent with CCO-related parameters outputted by Vigilance II®, Vigileo [™] , or EV1000
EVLW ITBV (Coefficient of vari forms (laboratory to TB Range TB, TI Accuracy TB, TI Resolution pArt/pCVP Range pArt/pCVP Accuracy ScvO ₂ Range Accuracy ICG Method HR Range C.O. Range SV Range Provides Monitorin SVR, SVRI, PVR, PVR Continuous Cardia Measured Parameter Vigilance II: Vigileo:	1 to 250 ml ≤ 2% 10 to 5000 ml ≤ 6% 50 to 6000 ml ≤ 3% ation is measured using synthetic and/or database wave testing.) Coefficient of variation= SD/mean error.) 23 to 43 °C / 73.4 to 109.4 °F ± 0.1 °C (without sensor) 0.1 °C -50 to 300 mmHg y ± 1 mmHg or ± 2 %, whichever is greater 0 to 99 % $\pm 3\%$ (50 to 80 %) Thoracic electrical bioimpediance (TEB) 40 to 200 bpm (ICG), accuracy ± 2 bpm 1.0 to 15 L/min 5 to 250 ml g Parameters ACI, VI, PEP, LVET, TFI, TFC, HR, C.O., C.I., SV, SVI, , LCW, LCWI, LVSW, LVSWI, STR, VEPT c Output Interface er Consistent with CCO-related parameters outputted by Vigilance II®, Vigileo [™] , or EV1000 CCO, CCI, C.O., C.I., SV, SVR, SVRI, RVEF, EDV, EDVI, ESV, ESVI, TB, SaO ₂ , VO ₂ , O ₂ EI, DO ₂ , ScvO ₂ , SO ₂
EVLW ITBV (Coefficient of vari forms (laboratory to TB Range TB, TI Accuracy TB, TI Resolution pArt/pCVP Range pArt/pCVP Accuracy ScvO ₂ Range Accuracy ICG Method HR Range C.O. Range SV Range Provides Monitorin SVR, SVRI, PVR, PVR Continuous Cardia Measured Parameter Vigilance II:	1 to 250 ml ≤ 2% 10 to 5000 ml ≤ 6% 50 to 6000 ml ≤ 3% ation is measured using synthetic and/or database wave isting.) Coefficient of variation= SD/mean error.) 23 to 43 °C / 73.4 to 109.4 °F ± 0.1 °C (without sensor) 0.1 °C -50 to 300 mmHg y ± 1 mmHg or ± 2 %, whichever is greater 0 to 99 % ± 3% (50 to 80 %) Thoracic electrical bioimpediance (TEB) 40 to 200 bpm (ICG), accuracy ±2 bpm 1.0 to 15 L/min 5 to 250 ml g Parameters ACI, VI, PEP, LVET, TFI, TFC, HR, C.O., C.I., SV, SVI, , LCW, LCWI, LVSW, LVSWI, STR, VEPT c Output Interface er Consistent with CCO-related parameters outputted by Vigilance II®, Vigileo [™] , or EV1000 CCO, CCI, C.O., C.I., SV, SVI, SVR, SVRI, RVEF, EDV, EDVI, ESV, ESVI, TB, SaO ₂ , VO ₂ , O, EI, DO ₂ , ScvO ₂ , SQI CCO, CCI, SV, SVI, SVR, SVRI, ScvO ₂ , SVO ₂
EVLW ITBV (Coefficient of vari forms (laboratory to TB Range TB, TI Accuracy TB, TI Resolution pArt/pCVP Range pArt/pCVP Accurace ScvO2 Range Accuracy ICG Method HR Range C.O. Range SV Range Provides Monitorin SVR, SVRI, PVR, PVR Continuous Cardia Measured Parameter Vigilance II: Vigileo: EV1000:	1 to 250 ml ≤ 2% 10 to 5000 ml ≤ 6% 50 to 6000 ml ≤ 3% ation is measured using synthetic and/or database wave isting.) Coefficient of variation= SD/mean error.) 23 to 43 °C / 73.4 to 109.4 °F $\pm 0.1 °C$ (without sensor) 0.1 °C -50 to 300 mmHg y ± 1 mmHg or ± 2 %, whichever is greater 0 to 99 % $\pm 3\%$ (50 to 80 %) Thoracic electrical bioimpediance (TEB) 40 to 200 bpm (ICG), accuracy ± 2 bpm 1.0 to 15 L/min 5 to 250 ml g Parameters ACI, VI, PEP, LVET, TFI, TFC, HR, C.O., C.I., SV, SVI, , LCW, LCWI, LVSW, LVSWI, STR, VEPT c Output Interface er Consistent with CCO-related parameters outputted by Vigilance II®, Vigileo [™] , or EV1000 CCO, CCI, C.O., C.I., SV, SVI, SVR, SVRI, RVEF, EDV, EDVI, ESV, ESVI, TB, SaO ₂ , VO ₂ , O ₂ EI, DO ₂ , ScvO ₂ , SvO ₂ CCO, CCI, CO, CI, SV, SVI, SVR, SVRI, SVRI, GEF, CFI, GEDV, ITBV, ITBI, EVLW, EVWI, PVPI
EVLW ITBV (Coefficient of vari forms (laboratory to TB Range TB, TI Accuracy TB, TI Resolution pArt/pCVP Range pArt/pCVP Accurace ScvO2 Range Accuracy ICG Method HR Range C.O. Range SV Range Provides Monitorin SVR, SVRI, PVR, PVR Continuous Cardia Measured Parameter Vigilance II: Vigilance II: Vigileo: EV1000:	1 to 250 ml ≤ 2% 10 to 5000 ml ≤ 6% 50 to 6000 ml ≤ 3% ation is measured using synthetic and/or database wave isting.) Coefficient of variation= SD/mean error.) 23 to 43 °C / 73.4 to 109.4 °F $\pm 0.1 °C$ (without sensor) 0.1 °C -50 to 300 mmHg y ± 1 mmHg or ± 2 %, whichever is greater 0 to 99 % $\pm 3\%$ (50 to 80 %) Thoracic electrical bioimpediance (TEB) 40 to 200 bpm (ICG), accuracy ± 2 bpm 1.0 to 15 L/min 5 to 250 ml g Parameters ACI, VI, PEP, LVET, TFI, TFC, HR, C.O., C.I., SV, SVI, LCW, LCWI, LVSW, LVSWI, STR, VEPT c Output Interface er Consistent with CCO-related parameters outputted by Vigilance II®, Vigileo [™] , or EV1000 CCO, CCI, C.O., C.I., SV, SVI, SVR, SVRI, SVEF, EDV, EDVI, ESV, ESVI, TB, SaO ₂ , VO ₂ , O ₂ EI, DO ₂ , ScvO ₂ , SvO ₂ , SQI CCO, CCI, SV, SVI, SVR, SVRI, SCVO ₂ , SvO ₂ CCO, CCI, CO, C, SV, SVI, SVR, SVRI, GEF, CFI, GEDV, ITBV, ITBI, EVLW, EVWI, PVPI n CO ₂
EVLW ITBV (Coefficient of vari forms (laboratory to TB Range TB, TI Accuracy TB, TI Resolution pArt/pCVP Range pArt/pCVP Ange pArt/pCVP Accuracy ScvO2 Range Accuracy ICG Method HR Range C.O. Range SV Range Provides Monitorin SVR, SVRI, PVR, PVR Continuous Cardia Measured Parameter Vigilance II: Vigileo: EV1000: Artema Sidestrear Meet standard of IS	1 to 250 ml ≤ 2% 10 to 5000 ml ≤ 6% 50 to 6000 ml ≤ 3% ation is measured using synthetic and/or database wave sisting.) Coefficient of variation= SD/mean error.) 23 to 43 °C / 73.4 to 109.4 °F ± 0.1 °C (without sensor) 0.1 °C -50 to 300 mmHg y ± 1 mmHg or ± 2 %, whichever is greater 0 to 99 % ± 3% (50 to 80 %) Thoracic electrical bioimpediance (TEB) 40 to 200 bpm (ICG), accuracy ±2 bpm 1.0 to 15 L/min 5 to 250 ml g Parameters ACI, VI, PEP, LVET, TFI, TFC, HR, C.O., C.I., SV, SVI, , LCW, LCWI, LVSWI, STR, VEPT c Output Interface er Consistent with CCO-related parameters outputted by Vigilance II®, Vigileo™, or EV1000 CCO, CCI, C.O., C.I., SV, SVI, SVR, SVRI, RVEF, EDV, EDVI, ESV, ESVI, TB, SaO ₂ , VO ₂ , O,EI, DO ₂ , ScvO ₂ , SO ₂ CCO, CCI, CO, CI, SV, SVI, SVR, SVRI, SVRI, GEF, CFI, GEDV, ITBV, ITBI, EVLW, EVWI, PVPI n CO ₂ 0 80601-2-55.
EVLW ITBV (Coefficient of vari forms (laboratory to TB Range TB, TI Accuracy TB, TI Resolution pArt/pCVP Range pArt/pCVP Accurace ScvO2 Range Accuracy ICG Method HR Range C.O. Range SV Range Provides Monitorin SVR, SVRI, PVR, PVR Continuous Cardia Measured Parameter Vigilance II: Vigilance II: Vigileo: EV1000:	1 to 250 ml ≤ 2% 10 to 5000 ml ≤ 6% 50 to 6000 ml ≤ 3% ation is measured using synthetic and/or database wave sisting.) Coefficient of variation= SD/mean error.) 23 to 43 °C / 73.4 to 109.4 °F ± 0.1 °C (without sensor) 0.1 °C -50 to 300 mmHg y ± 1 mmHg or ± 2 %, whichever is greater 0 to 99 % ± 3% (50 to 80 %) Thoracic electrical bioimpediance (TEB) 40 to 200 bpm (ICG), accuracy ±2 bpm 1.0 to 15 L/min 5 to 250 ml g Parameters ACI, VI, PEP, LVET, TFI, TFC, HR, C.O., C.I., SV, SVI, , LCW, LCWI, LVSWI, STR, VEPT c Output Interface er Consistent with CCO-related parameters outputted by Vigilance II®, Vigileo™, or EV1000 CCO, CCI, C.O., C.I., SV, SVI, SVR, SVRI, RVEF, EDV, EDVI, ESV, ESVI, TB, SaO ₂ , VO ₂ , O,EI, DO ₂ , ScvO ₂ , SO ₂ CCO, CCI, CO, CI, SV, SVI, SVR, SVRI, SVRI, GEF, CFI, GEDV, ITBV, ITBI, EVLW, EVWI, PVPI n CO ₂ 0 80601-2-55.
EVLW ITBV (Coefficient of vari forms (laboratory to TB Range TB, TI Accuracy TB, TI Resolution pArt/pCVP Range pArt/pCVP Accuracy ScvO2 Range Accuracy ICG Method HR Range C.O. Range SV Range Provides Monitorin SVR, SVRI, PVR, PVR Continuous Cardia Measured Paramete Vigilance II: Vigileo: EV1000: Artema Sidestrear Meet standard of IS Measurement Range	1 to 250 ml $\leq 2\%$ 10 to 5000 ml $\leq 3\%$ 50 to 6000 ml $\leq 3\%$ ation is measured using synthetic and/or database wave sisting.) Coefficient of variation= SD/mean error.) 23 to 43 °C / 73.4 to 109.4 °F ± 0.1 °C (without sensor) 0.1 °C -50 to 300 mmHg y ± 1 mmHg or $\pm 2\%$, whichever is greater 0 to 99 % $\pm 3\%$ (50 to 80 %) Thoracic electrical bioimpediance (TEB) 40 to 200 bpm (ICG), accuracy ± 2 bpm 1.0 to 15 L/min 5 to 250 ml g Parameters ACI, VI, PEP, LVET, TFI, TFC, HR, C.O., C.I., SV, SVI, LCW, LCWI, LVSW, LVSWI, STR, VEPT c Output Interface er Consistent with CCO-related parameters outputted by Vigilance II®, Vigileo TM , or EV1000 CCO, CCI, C.O., C.I., SV, SVI, SVR, SVRI, RVEF, EDV, EDVI, ESV, ESVI, TB, SaO ₂ , VO ₂ , O ₂ EI, DO ₂ , ScvO ₂ , SO ₂ CCO, CCI, CO, CI, SV, SVI, SVR, SVRI, SVR, SVRI, GEF, CFI, GEDV, ITBV, ITBI, EVLW, EVWI, PVPI n CO ₂ 0 80601-2-55. e 0 to 150 mmHg
EVLW ITBV (Coefficient of vari forms (laboratory to TB Range TB, TI Accuracy TB, TI Resolution pArt/pCVP Range pArt/pCVP Accuracy ScvO ₂ Range Accuracy ICG Method HR Range C.O. Range SV Range Provides Monitorin SVR, SVRI, PVR, PVR Continuous Cardia Measured Paramete Vigilance II: Vigilance II: Vigileo: EV1000: Artema Sidestrear Meet standard of IS Measurement Rang etCO ₂ : O ₂ (optional) CO ₂ Accuracy	1 to 250 ml $\leq 2\%$ 10 to 5000 ml $\leq 3\%$ ation is measured using synthetic and/or database wave string.) Coefficient of variation= SD/mean error.) 23 to 43 °C / 73.4 to 109.4 °F ± 0.1 °C (without sensor) 0.1 °C -50 to 300 mmHg y ± 1 mmHg or $\pm 2\%$, whichever is greater 0 to 99 % $\pm 3\%$ (50 to 80 %) Thoracic electrical bioimpediance (TEB) 40 to 200 bpm (ICG), accuracy ± 2 bpm 1.0 to 15 L/min 5 to 250 ml g Parameters ACI, VI, PEP, LVET, TFI, TFC, HR, C.O., C.I., SV, SVI, LCW, LCWI, LVSW, LVSWI, STR, VEPT c Output Interface er Consistent with CCO-related parameters outputted by Vigilance II®, Vigileo™, or EV1000 CCO, CCI, C.O., C.I., SV, SVI, SVR, SVRI, RVEF, EDV, EDVI, ESV, ESVI, TB, SaO ₂ , VO ₂ , O ₂ EI, DO ₂ , ScvO ₂ , SO ₂ CCO, CCI, CO, CI, SV, SVI, SVR, SVRI, SCVD ₂ , SVO ₂ CCO, CCI, CO, CI, SV, SVI, SVR, SVRI, GEF, CFI, GEDV, ITBI, EVLW, EVWI, PVPI n CO ₂ 0 80601-2-55. e 0 to 150 mmHg : 0 to 100 %
EVLW ITBV (Coefficient of vari forms (laboratory to TB Range TB, TI Accuracy TB, TI Resolution pArt/pCVP Range pArt/pCVP Accuracy ScvO ₂ Range Accuracy ICG Method HR Range C.O. Range SV Range Provides Monitorin SVR, SVRI, PVR, PVR Continuous Cardia Measured Paramete Vigilance II: Vigilance II: Vigilance II: Vigileo: EV1000: Artema Sidestrear Meet standard of IS Measurement Rang etCO ₂ : O ₂ (optional)	1 to 250 ml $\leq 2\%$ 10 to 5000 ml $\leq 3\%$ ation is measured using synthetic and/or database wave isting.) Coefficient of variation= SD/mean error.) 23 to 43 °C / 73.4 to 109.4 °F ± 0.1 °C (without sensor) 0.1 °C -50 to 300 mmHg y ± 1 mmHg or $\pm 2\%$, whichever is greater 0 to 99 % $\pm 3\%$ (50 to 80 %) Thoracic electrical bioimpediance (TEB) 40 to 200 bpm (ICG), accuracy ± 2 bpm 1.0 to 15 L/min 5 to 250 ml g Parameters ACI, VI, PEP, LVET, TFI, TFC, HR, C.O., C.I., SV, SVI, , LCW, LCWI, LVSW, LVSWI, STR, VEPT c Output Interface er Consistent with CCO-related parameters outputted by Vigilance II®, Vigileo [™] , or EV1000 CCO, CCI, C.O., C.I., SV, SVI, SVR, SVRI, RVEF, EDV, EDVI, ESV, ESVI, TB, SaO ₂ , VO ₂ , O ₂ EI, DO ₂ , ScvO ₂ , SQI CCO, CCI, CO, CI, SV, SVI, SVR, SVRI, SCRJ, GEF, CFI, GEDV, ITBV, ITBI, EVLW, EVWI, PVPI n CO ₂ 0 to 150 mmHg : 0 to 100 % g: ± 2 mmHg

41 to 76 mmHg:

± 5% of reading

77 to 99 mmHg: ± 10% of reading 100 to 150 mmHg: ± (3 mmHg+8% of reading) O₂ Accuracy 0 to 25 %: $\pm 1\%$ 25.1 to 80 %: ±2 % 80.1 to 100 %±3 % Resolution etCO₂: 1 mmHa O₂(optional) : 1% Sample Flow Rate Adult/Pediatric: 120 ml/min (with or without O2 monitoring) Neonate: 70 ml/min or 90 ml/min, selectable 90 ml/min (with O2 monitoring) Sample Flow Rate Tolerance ± 15 ml/min or ± 15 %, whichever is greater. Warm-up Time 90 sec (maximum), 20 sec (typically) Measured with a neonatal watertrap and 2.5-meter neonatal sampling line, or an adult watertrap and a 2.5-meter adult sampling line: **Rise Time** etCO₂: ≤ 250 ms @ 70 ml/min (Neonate watertrap) ≤ 250 ms @ 90 ml/min (Neonate watertrap) ≤ 300 ms @ 120 ml/min (Adult watertrap) O₂(optional) : ≤ 800 ms @ 90 ml/min (Neonate watertrap) ≤ 750 ms @ 120 ml/min (Adult watertrap) Sampling Delay Time ≤ 5.0 sec @ 70 ml/min (Neonate watertrap) etCO₂: \leq 4.5 sec @ 90 ml/min (Neonate watertrap) \leq 5.0 sec @ 120 ml/min (Adult watertrap) O₂(optional) : ≤ 4.5 sec @ 90 ml/min (Neonate watertrap) ≤ 5.0 sec @ 120 ml/min (Adult watertrap) awRR Range 0 to 150 rpm awRR Accuracy 0 to 60 rpm: ±1 rpm 61 to 150 rpm: ± 2 rpm Apnea Time 10, 15, 20, 25, 30, 35, 40 sec Provide VCO₂, VO₂, MVCO₂, MVO₂, EE, RQ parameters, when monitoring with RM module. **Oridion Microstream CO₂** Measurement Range 0 to 99 mmHg Resolution 1 mmHg Accuracy 0 to 38 mmHq: ±2 mmHg ±5 % + 0.08 % of the reading – 38 mmHg 39 to 99 mmHg: Sample Flow Rate 50 ^{-7.5}+15 ml/min Start-up Time 30 sec (typical) **Response Time** 2.9 s (typical) awRR Range 0 to 150 rpm awRR Accuracy 0 to 70 rpm: ±1 rpm 71 to 120 rpm: ±2 rpm 121 to 150 rpm: ±3 rpm Appea time 10, 15, 20, 25, 30, 35, 40 sec Capnostat Mainstream CO₂ Measurement Range 0 to 150 mmHg Resolution 1 mmHg Accuracy 0 to 40 mmHg: ±2mmHg 41 to 70 mmHg: ± 5% of reading 71 to 100 mmHg: ± 8% of reading 101 to 150 mmHg: ± 10% of reading Rise time < 60 msec awRR Range 0 to 150 rpm awRR Accuracy ±1 rpm Provide VCO₂, MVCO₂, FeCO₂, SlopeCO₂, Vtalv, MValv, Vdaw, Vdaw/Vt, Vdalv, Vdalv/Vt, Vdphy, Vd/Vt, when monitoring with RM module. **Anesthesia Gases** Meet standard of ISO 80601-2-55. Sampling Rate Adult/pediatric: 200 ml/min Neonate: 120 ml/min Sampling Rate Tolerance ± 10 ml/min or $\pm 10\%$, whichever is greater. Sampling Delay Time < 4 sec**Refresh Rate** 1 sec Warm-up Time 45 sec to warm-up status 10 min to ready-to-measure status Measurement Range 0 to 30 % CO₂: N₂O: 0 to 100 % Des/Sev/Enf/Iso/Hal: 0 to 30 % 0 to 100 % O2: awRR: 2 to 100 rpm Resolution CO₂: 0.1 %

	N ₂ O: Des/Sev/Enf/Iso/Ha	1 % al:				
		0.1 %				
	O ₂ :	1 %				
	awRR:	1 rpm				
Full A	ccuracy					
	Gases	Range (%REL)	Accuracy (%ABS)			
	CO ₂ :	0 to 1 %	± 0.1 %			
		1 to 5 %	± 0.2 %			
		5 to 7 %	± 0.3 %			
		7 to 10 %	± 0.5 %			
		> 10 %	Not specified			
	N O	0 to 20 %	$\pm 2\%$			
	N ₂ O:	/-				
	Dee	20 to 100 %	± 3 %			
	Des:	0 to 1 %	± 0.15 %			
		1 to 5 %	± 0.2 %			
		5 to 10 %	± 0.4 %			
		10 to 15 %	± 0.6 %			
		15 to 18 %	±1%			
		> 18 %	Not specified			
	Sev:	0 to 1 %	± 0.15 %			
		1 to 5 %	± 0.2 %			
		5 to 8 %	± 0.4 %			
		> 8 %	Not specified			
	Enf/Iso/Hal:	0 to 1 %	± 0.15 %			
		1 to 5 %	± 0.2 %			
		> 5 %	Not specified			
	O ₂ :	0 to 25 %	±1%			
		25 to 80 %	± 2 %			
		80 to 100 %	± 2 %			
	awRR:	2 to 60 rpm	± 1 rpm			
	divinit.	> 60 rpm	Not specified			
Rise T	ime	> 00 ipin	Not specifica			
inise i		ml/min_using the D	RYLINE II ™ watertrap and a			
	neonatal 2.5m sam		With water trap and a			
	CO ₂ /N ₂ O:	$< 250 \mathrm{ms}$				
	lso/Hal/Sev/Des:	$\leq 300 \text{ ms}$				
	Enf:	\leq 350 ms				
		=				
	O ₂ :	≤ 600 ms				
			NE II [™] watertrap and an adult			
	2.5m sampling line					
	CO ₂ / N ₂ O:	≤ 250 ms				
	Iso/Hal/Sev/Des:	≤ 300 ms				
	Enf:	≤ 350 ms				
	O ₂ :	≤ 500 ms				
Samp	oling Delay Time					
			RYLINE II ™ watertrap and a			
	neonatal 2.5m sam	nling line				
	neonatal 215111 Sain	ping inc,				
	CO ₂ :	$\leq 4 \sec$				
	CO ₂ :	\leq 4 sec				
	CO ₂ : N ₂ O:	≤ 4 sec ≤ 4.2 sec ≤ 4 sec				
	CO ₂ : N ₂ O: O ₂ : Enf/Iso/Hal/Sev/De	≤ 4 sec ≤ 4.2 sec ≤ 4 sec es: ≤ 4.4 sec	NE II™ watertrap and an adult			
	CO ₂ : N ₂ O: O ₂ : Enf /Iso/Hal/Sev/De Sampling flow 200	\leq 4 sec \leq 4.2 sec \leq 4 sec es: \leq 4.4 sec ml/min, using DRYLI	NE II [™] watertrap and an adult			
	CO ₂ : N ₂ O: O ₂ : Enf /Iso/Hal/Sev/Da Sampling flow 200 2.5m sampling line	\leq 4 sec \leq 4.2 sec \leq 4 sec es: \leq 4.4 sec ml/min, using DRYLI	NE II ™ watertrap and an adult			
	CO ₂ : N ₂ O: O ₂ : Enf/Iso/Hal/Sev/De Sampling flow 200 2.5m sampling line CO ₂ :	\leq 4 sec \leq 4.2 sec \leq 4 sec es: \leq 4.4 sec ml/min, using DRYLI	NE II ™ watertrap and an adult			
	CO_2 : N_2O : O_2 : Enf /Iso/Hal/Sev/Da Sampling flow 200 2.5m sampling line CO_2 : N_2O :	≤ 4 sec ≤ 4.2 sec ≤ 4 sec es: ≤ 4.4 sec ml/min, using DRYLI :: ≤ 4.2 sec ≤ 4.3 sec	NE II [™] watertrap and an adult			
	CO ₂ : N ₂ O: O ₂ : Enf /lso/Hal/Sev/De Sampling flow 200 2.5m sampling line CO ₂ : N ₂ O: O ₂ :	<pre> < 4 sec < 4.2 sec < 4.2 sec < 4 sec est < 4.4 sec ml/min, using DRYLI ex </pre> < 4.2 sec < 4.3 sec < 4.3 sec < 4.3 sec < 4 sec	NE II [™] watertrap and an adult			
۵۰۰	CO_2 : N_2O : O_2 : Enf /lso/Hal/Sev/De Sampling flow 200 2.5m sampling line CO_2 : N_2O : O_2 : Enf/Iso/Hal/Sev/De	≤ 4 sec ≤ 4.2 sec ≤ 4 sec es: ≤ 4.4 sec ml/min, using DRYLI : ≤ 4.2 sec ≤ 4.3 sec ≤ 4.3 sec ≤ 4 sec :s: ≤ 4.5 sec				
	CO_2 : N_2O : O_2 : Enf /lso/Hal/Sev/De Sampling flow 200 2.5m sampling line CO_2 : N_2O : O_2 : Enf/lso/Hal/Sev/De a time	≤ 4 sec ≤ 4.2 sec ≤ 4 sec es: ≤ 4.4 sec ml/min, using DRYLI : ≤ 4.2 sec ≤ 4.3 sec ≤ 4.3 sec ≤ 4 sec us: ≤ 4.5 sec 10,15,20,25,30,35,4	10 sec			
Provi	CO_2 : N_2O : O_2 : Enf /lso/Hal/Sev/De Sampling flow 200 2.5m sampling line CO_2 : N_2O : O_2 : Enf/Iso/Hal/Sev/De a time de MAC value (support	$\leq 4 \sec$ $\leq 4.2 \sec$ $\leq 4.8 \sec$ est: $\leq 4.4 \sec$ mI/min, using DRYLI $\leq 4.2 \sec$ $\leq 4.3 \sec$ $\leq 4.3 \sec$ $\leq 4.3 \sec$ $\leq 4.5 \sec$ 10,15,20,25,30,35,4 ort calibrated by age	10 sec).			
Provi Supp	CO_2 : N_2O : O_2 : Enf /lso/Hal/Sev/De Sampling flow 200 2.5m sampling line CO_2 : N_2O : O_2 : Enf/lso/Hal/Sev/De a time	$\leq 4 \sec$ $\leq 4.2 \sec$ $\leq 4.8 \sec$ est: $\leq 4.4 \sec$ mI/min, using DRYLI $\leq 4.2 \sec$ $\leq 4.3 \sec$ $\leq 4.3 \sec$ $\leq 4.3 \sec$ $\leq 4.5 \sec$ 10,15,20,25,30,35,4 ort calibrated by age	10 sec).			
Provi Supp RM	CO ₂ : N ₂ O: O ₂ : Enf /Iso/Hal/Sev/De Sampling flow 200 2.5m sampling line CO ₂ : N ₂ O: O ₂ : Enf/Iso/Hal/Sev/De a time de MAC value (suppo ort two mixed gas id	\leq 4 sec \leq 4.2 sec \leq 4 sec es: \leq 4.4 sec ml/min, using DRYLI \leq \leq 4.2 sec \leq 4.3 sec \leq 4.3 sec \leq 4 sec s: \leq 4.5 sec 10,15,20,25,30,35,4 prt calibrated by age entify and monitorin	10 sec).			
Provi Supp RM Meth	CO ₂ : N ₂ O: O ₂ : Enf /Iso/Hal/Sev/De Sampling flow 200 2.5m sampling line CO ₂ : N ₂ O: O ₂ : Enf/Iso/Hal/Sev/De a time de MAC value (suppo ort two mixed gas id	$\leq 4 \sec$ $\leq 4.2 \sec$ $\leq 4.8 \sec$ est: $\leq 4.4 \sec$ mI/min, using DRYLI $\leq 4.2 \sec$ $\leq 4.3 \sec$ $\leq 4.3 \sec$ $\leq 4.3 \sec$ $\leq 4.5 \sec$ 10,15,20,25,30,35,4 ort calibrated by age	10 sec).			
Provi Supp RM Meth	CO ₂ : N ₂ O: O ₂ : Enf /Iso/Hal/Sev/De Sampling flow 200 2.5m sampling line CO ₂ : N ₂ O: O ₂ : Enf/Iso/Hal/Sev/De a time de MAC value (suppo ort two mixed gas id od urement Range	\leq 4 sec \leq 4.2 sec \leq 4 sec es: \leq 4.4 sec ml/min, using DRYLI es: \leq 4.2 sec \leq 4.3 sec \leq 4.3 sec \leq 4.3 sec \leq 4 sec rs: \leq 4.5 sec 10,15,20,25,30,35,4 ort calibrated by age entify and monitorin Diff-Pressure flow	10 sec). ng.			
Provi Supp RM Meth	CO ₂ : N ₂ O: O ₂ : Enf /Iso/Hal/Sev/De Sampling flow 200 2.5m sampling line CO ₂ : N ₂ O: O ₂ : Enf/Iso/Hal/Sev/De a time de MAC value (suppo ort two mixed gas id	\leq 4 sec \leq 4.2 sec \leq 4 sec es: \leq 4.4 sec ml/min, using DRYLI :: \leq 4.2 sec \leq 4.3 sec \leq 4.3 sec \leq 4 sec is: \leq 4.5 sec 10,15,20,25,30,35,4 ort calibrated by age entify and monitorin Diff-Pressure flow Adult/Pediatric: \pm (10 sec). ng. 2 to 120) L/min			
Provi Supp RM Meth	CO ₂ : N ₂ O: O ₂ : Enf /Iso/Hal/Sev/De Sampling flow 200 2.5m sampling line CO ₂ : N ₂ O: O ₂ : Enf/Iso/Hal/Sev/De a time de MAC value (suppo ort two mixed gas id od urement Range Flow	\leq 4 sec \leq 4.2 sec \leq 4 sec es: \leq 4.4 sec ml/min, using DRYLI : \leq 4.2 sec \leq 4.3 sec \leq 4.3 sec \leq 4 sec is: \leq 4.5 sec 10,15,20,25,30,35,4 ort calibrated by age entify and monitorin Diff-Pressure flow Adult/Pediatric: \pm (Neonate: \pm (0.5 to 1)	10 sec). ng. 2 to 120) L/min			
Provi Supp RM Meth	CO ₂ : N ₂ O: O ₂ : Enf /lso/Hal/Sev/De Sampling flow 200 2.5m sampling line CO ₂ : N ₂ O: O ₂ : Enf/Iso/Hal/Sev/De a time de MAC value (suppo ort two mixed gas id od urement Range Flow Paw	$\leq 4 \sec$ $\leq 4.2 \sec$ $\leq 4.2 \sec$ $\equiv 5.2 \pm 4.4 \sec$ ml/min, using DRYLI \equiv $\leq 4.2 \sec$ $\leq 4.3 \sec$ $\leq 4.3 \sec$ $\leq 4.3 \sec$ $\leq 4.3 \sec$ $\leq 4.5 \sec$ 10,15,20,25,30,35,4 ort calibrated by age entify and monitorin Diff-Pressure flow Adult/Pediatric: $\pm (0.5 \tan 2)$ -20 to 120 cmH ₂ O	10 sec). ng. 2 to 120) L/min 30) L/min			
Provi Supp RM Meth	CO ₂ : N ₂ O: O ₂ : Enf /Iso/Hal/Sev/De Sampling flow 200 2.5m sampling line CO ₂ : N ₂ O: O ₂ : Enf/Iso/Hal/Sev/De a time de MAC value (suppo ort two mixed gas id od urement Range Flow	\leq 4 sec \leq 4.2 sec \leq 4.2 sec est: \leq 4.4 sec ml/min, using DRYLI \leq \leq 4.2 sec \leq 4.3 sec \leq 4.3 sec \leq 4 sec ts: \leq 4.5 sec 10,15,20,25,30,35,4 ort calibrated by age entify and monitorin Diff-Pressure flow Adult/Pediatric: \pm ((Neonate: \pm (0.5 to -20 to 120 cmH ₂ O Adult/Pediatric: 2 t	0 sec). ng. 2 to 120) L/min 30) L/min o 60 L/min			
Provi Supp RM Meth	CO_2 : N_2O : O_2 : Enf /lso/Hal/Sev/De Sampling flow 200 2.5m sampling line CO_2 : N_2O : O_2 : Enf/Iso/Hal/Sev/De a time de MAC value (support ort two mixed gas id od urement Range Flow Paw MVe/MVi	$\leq 4 \sec$ $\leq 4.2 \sec$ $\leq 4.2 \sec$ $\leq 4.8 \sec$ ml/min, using DRYLI $\leq 4.2 \sec$ $\leq 4.3 \sec$ $\leq 4.3 \sec$ $\leq 4.3 \sec$ $\leq 4.5 \sec$ 10,15,20,25,30,35,4 ort calibrated by age entify and monitorin Diff-Pressure flow Adult/Pediatric: $\pm (0.5 \tan 10^{-2})$ Neonate: $\pm (0.5 \tan 10^{-2})$ Adult/Pediatric: 2 t Infant: 0.5 to 15 L/r	10 sec). ng. 2 to 120) L/min 30) L/min o 60 L/min nin			
Provi Supp RM Meth	CO ₂ : N ₂ O: O ₂ : Enf /lso/Hal/Sev/De Sampling flow 200 2.5m sampling line CO ₂ : N ₂ O: O ₂ : Enf/Iso/Hal/Sev/De a time de MAC value (suppo ort two mixed gas id od urement Range Flow Paw	$\leq 4 \sec$ $\leq 4.2 \sec$ $\leq 4.2 \sec$ $\leq 4.4 \sec$ ml/min, using DRYLI \equiv $\leq 4.2 \sec$ $\leq 4.3 \sec$ $\leq 4.3 \sec$ $\leq 4.3 \sec$ $\leq 4.3 \sec$ $\leq 4.5 \sec$ 10,15,20,25,30,35,4 ort calibrated by age entify and monitorin Diff-Pressure flow Adult/Pediatric: $\pm (0.5 \tan 2)$ -20 to 120 cmH ₂ O Adult/Pediatric: 10	10 sec). ng. 2 to 120) L/min 30) L/min o 60 L/min nin 0 to 1500 ml			
Provi Supp RM Meth	CO_2 : N_2O : O_2 : Enf /lso/Hal/Sev/De Sampling flow 200 2.5m sampling line CO_2 : N_2O : O_2 : Enf/Iso/Hal/Sev/De a time de MAC value (support ort two mixed gas id od urement Range Flow Paw MVe/MVi	$\leq 4 \sec$ $\leq 4.2 \sec$ $\leq 4.2 \sec$ $\leq 4.4 \sec$ ml/min, using DRYLI \equiv $\leq 4.2 \sec$ $\leq 4.3 \sec$ $\leq 4.3 \sec$ $\leq 4.3 \sec$ $\leq 4.3 \sec$ $\leq 4.5 \sec$ 10,15,20,25,30,35,4 ort calibrated by age entify and monitorin Diff-Pressure flow Adult/Pediatric: $\pm (0$ Neonate: $\pm (0.5 to -20)$ $-20 to 120 cmH_2O$ Adult/Pediatric: 2 theoretic set of the theoretic s	10 sec). ng. 2 to 120) L/min 30) L/min o 60 L/min nin 0 to 1500 ml			
Provi Supp RM Meth Meas	CO ₂ : N ₂ O: O ₂ : Enf /Iso/Hal/Sev/De Sampling flow 200 2.5m sampling line CO ₂ : N ₂ O: O ₂ : Enf/Iso/Hal/Sev/De a time de MAC value (suppo ort two mixed gas id od urement Range Flow Paw MVe/MVi TVe/TVi awRR range	$\leq 4 \sec$ $\leq 4.2 \sec$ $\leq 4.2 \sec$ $\leq 4.4 \sec$ ml/min, using DRYLI \equiv $\leq 4.2 \sec$ $\leq 4.3 \sec$ $\leq 4.3 \sec$ $\leq 4.3 \sec$ $\leq 4.3 \sec$ $\leq 4.5 \sec$ 10,15,20,25,30,35,4 ort calibrated by age entify and monitorin Diff-Pressure flow Adult/Pediatric: $\pm (0.5 \tan 2)$ -20 to 120 cmH ₂ O Adult/Pediatric: 10	10 sec). ng. 2 to 120) L/min 30) L/min o 60 L/min nin 0 to 1500 ml			
Provi Supp RM Meth Meas	CO ₂ : N ₂ O: O ₂ : Enf/Iso/Hal/Sev/De Sampling flow 200 2.5m sampling line CO ₂ : N ₂ O: O ₂ : Enf/Iso/Hal/Sev/De a time de MAC value (suppo ort two mixed gas id od urement Range Flow Paw MVe/MVi TVe/TVi	$\leq 4 \sec$ $\leq 4.2 \sec$ $\leq 4.2 \sec$ $\leq 4.4 \sec$ ml/min, using DRYLI \equiv $\leq 4.2 \sec$ $\leq 4.3 \sec$ $\leq 4.3 \sec$ $\leq 4.3 \sec$ $\leq 4.3 \sec$ $\leq 4.5 \sec$ 10,15,20,25,30,35,4 ort calibrated by age entify and monitorin Diff-Pressure flow Adult/Pediatric: $\pm (0$ Neonate: $\pm (0.5 to -20)$ $-20 to 120 cmH_2O$ Adult/Pediatric: 2 theoretic set of the theoretic s	10 sec). ng. 2 to 120) L/min 30) L/min o 60 L/min nin 0 to 1500 ml			
Provi Supp RM Meth Meas	CO ₂ : N ₂ O: O ₂ : Enf /Iso/Hal/Sev/De Sampling flow 200 2.5m sampling line CO ₂ : N ₂ O: O ₂ : Enf/Iso/Hal/Sev/De a time de MAC value (suppo ort two mixed gas id od urement Range Flow Paw MVe/MVi TVe/TVi awRR range	$\leq 4 \sec$ $\leq 4.2 \sec$ $\leq 4.2 \sec$ $\leq 4.4 \sec$ ml/min, using DRYLI \equiv $\leq 4.2 \sec$ $\leq 4.3 \sec$ $\leq 4.3 \sec$ $\leq 4.3 \sec$ $\leq 4.3 \sec$ $\leq 4.5 \sec$ 10,15,20,25,30,35,4 ort calibrated by age entify and monitorin Diff-Pressure flow Adult/Pediatric: $\pm (0$ Neonate: $\pm (0.5 to -20)$ $-20 to 120 cmH_2O$ Adult/Pediatric: 2 theoretic set of the theoretic s	10 sec). ng. 2 to 120) L/min 30) L/min o 60 L/min nin 0 to 1500 ml			
Provi Supp RM Meth Meas	CO ₂ : N ₂ O: O ₂ : Enf /Iso/Hal/Sev/De Sampling flow 200 2.5m sampling line CO ₂ : N ₂ O: O ₂ : Enf/Iso/Hal/Sev/De a time de MAC value (suppo ort two mixed gas id od urement Range Flow Paw MVe/MVi TVe/TVi awRR range ution	$\leq 4 \sec \leq 4.2 \sec \leq 4.2 \sec \leq 4.4 \sec ml/min, using DRYLI::\leq 4.2 \sec \leq 4.3 \sec \leq 4.5 \sec 10,15,20,25,30,35,4 ort calibrated by age entify and monitorin Diff-Pressure flow Adult/Pediatric: \pm (1)Neonate: \pm (0.5 to 1)^{-2}-20 to 120 cmH2OAdult/Pediatric: 2 tInfant: 0.5 to 15 L/rAdult/Pediatric: 10Infant: 20 to 500 m4 to 120 rpm$	10 sec). ng. 2 to 120) L/min 30) L/min o 60 L/min nin 0 to 1500 ml			
Provi Supp RM Meth Meas	CO ₂ : N ₂ O: O ₂ : Enf /lso/Hal/Sev/De Sampling flow 200 2.5m sampling line CO ₂ : N ₂ O: O ₂ : Enf/lso/Hal/Sev/De a time de MAC value (suppo ort two mixed gas id od urement Range Flow Paw MVe/MVi TVe/TVi awRR range ution Flow	$\leq 4 \sec \\ \leq 4.2 \sec \\ \leq 4.2 \sec \\ \leq 4.8 \sec \\ = 54.4 \sec \\ = 54.4 \sec \\ = 55.5 \le 4.4 \sec \\ = 55.5 \le 4.4 \sec \\ = 55.5 \sec \\ = 55.5 \sec \\ = 55.5 \sec \\ = 10,15,20,25,30,35,4 \\ = 55.5 \ = 55.5$	10 sec). ng. 2 to 120) L/min 30) L/min o 60 L/min nin 0 to 1500 ml l			
Provi Supp RM Meth Meas	CO ₂ : N ₂ O: O ₂ : Enf /lso/Hal/Sev/De Sampling flow 200 2.5m sampling line CO ₂ : N ₂ O: O ₂ : Enf/Iso/Hal/Sev/De a time de MAC value (suppo ort two mixed gas id od urement Range Flow Paw MVe/MVi TVe/TVi awRR range ution Flow Paw Naw	$\leq 4 \sec$ $\leq 4.2 \sec$ $\leq 4.2 \sec$ $\leq 4.4 \sec$ ml/min, using DRYLI \leq $\leq 4.2 \sec$ $\leq 4.3 \sec$ $\leq 4.3 \sec$ $\leq 4.3 \sec$ $\leq 4.3 \sec$ $\leq 4.5 \sec$ 10,15,20,25,30,35,4 ort calibrated by age entify and monitorin Diff-Pressure flow Adult/Pediatric: $\pm (0.5 to 1)^{-2}$ $-20 to 120 cmH_2O$ Adult/Pediatric: 2 t Infant: 0.5 to 15 L/r Adult/Pediatric: 10 Infant: 20 to 500 m 4 to 120 rpm 0.1 L/min $0.1 cmH_2O$	I0 sec). ng. 2 to 120) L/min 30) L/min o 60 L/min nin 0 to 1500 ml I			
Provi Supp RM Meth Meas	CO ₂ : N ₂ O: O ₂ : Enf /lso/Hal/Sev/De Sampling flow 200 2.5m sampling line CO ₂ : N ₂ O: O ₂ : Enf/Iso/Hal/Sev/De a time de MAC value (suppo ort two mixed gas id od urement Range Flow Paw MVe/MVi TVe/TVi awRR range ution Flow Paw Naw	$\leq 4 \sec \leq 4.2 \sec \leq 4.2 \sec \leq 4.8 \sec = 4.4 sec = 5.5 \le 4.4 sec = 5.5 \le 4.4 sec = 5.5 \le 4.3 sec \leq 4.3 sec \leq 4.3 sec \leq 4.3 sec = 5.5 sec = 10,15,20,25,30,35,4 ort calibrated by age = entify and monitorin Diff-Pressure flow Adult/Pediatric: \pm (0.5 to 1)^2 - 20 to 120 cmH_2O Adult/Pediatric: 2 t = 10 fmat: 0.5 to 15 L/r Adult/Pediatric: 10 = 10 fmat: 0.5 to 15 L/r Adult/Pediatric: 10 = 10 fmat: 20 to 500 m 4 to 120 rpm = 0.1 L/min = 0.1 L/min (MVe/W$	I0 sec). ng. 2 to 120) L/min 30) L/min o 60 L/min nin 0 to 1500 ml I			
Provi Supp RM Meth Meas	CO ₂ : N ₂ O: O ₂ : Enf/Iso/Hal/Sev/De Sampling flow 200 2.5m sampling line CO ₂ : N ₂ O: O ₂ : Enf/Iso/Hal/Sev/De a time de MAC value (support ort two mixed gas id od urement Range Flow Paw MVe/MVi TVe/TVi awRR range ution Flow Paw MVe/MVi	$\leq 4 \sec \\ \leq 4.2 \sec \\ \leq 4.2 \sec \\ \leq 4.4 \sec \\ ml/min, using DRYLI \\ \vdots \\ \leq 4.2 \sec \\ \leq 4.3 \sec \\ \leq 4.3 \sec \\ \leq 4.3 \sec \\ \leq 4.5 \sec \\ 10,15,20,25,30,35,4 \\ ort calibrated by age \\ entify and monitorin \\ Diff-Pressure flow \\ Adult/Pediatric: \pm (1)Neonate: \pm (0.5 to)-20 to 120 cmH2OAdult/Pediatric: 2 theorem 20 and 120 cmH2OAdult/Pediatric: 10 Infant: 0.5 to 15 L/rAdult/Pediatric: 10 Infant: 20 to 500 m4 to 120 rpm0.1 L/min (MVe/M0.1 L/min (MVe/M1 ml$	I0 sec). ng. 2 to 120) L/min 30) L/min o 60 L/min nin 0 to 1500 ml I			
Provi Supp RM Meth Meas	CO ₂ : N ₂ O: O ₂ : Enf/Iso/Hal/Sev/De Sampling flow 200 2.5m sampling line CO ₂ : N ₂ O: O ₂ : Enf/Iso/Hal/Sev/De a time de MAC value (suppo ort two mixed gas id od urement Range Flow Paw MVe/MVi TVe/TVi awRR range ution Flow Paw MVe/MVi TVe/TVi awRR range	$\leq 4 \sec$ $\leq 4.2 \sec$ $\leq 4.2 \sec$ $\leq 4.4 \sec$ mi/min, using DRYLI \equiv $\leq 4.2 \sec$ $\leq 4.3 \sec$ $\leq 4.5 \sec$ 10,15,20,25,30,35,4 ort calibrated by age entify and monitorin Diff-Pressure flow Adult/Pediatric: $\pm (0.5 \tan 2)$ -20 to 120 cmH ₂ O Adult/Pediatric: 10 Infant: 0.5 to 15 L/r Adult/Pediatric: 10 Infant: 20 to 500 m 4 to 120 rpm 0.1 L/min 0.1 cmH ₂ O 0.01 L/min (MVe/MV 0.1 L/min (MVe/MV	I0 sec). ng. 2 to 120) L/min 30) L/min o 60 L/min nin 0 to 1500 ml I			
Provi Supp RM Meth Meas	CO ₂ : N ₂ O: O ₂ : Enf/Iso/Hal/Sev/De Sampling flow 200 2.5m sampling line CO ₂ : N ₂ O: O ₂ : Enf/Iso/Hal/Sev/De a time de MAC value (suppo ort two mixed gas id od urement Range Flow Paw MVe/MVi TVe/TVi awRR range ution Flow Paw MVe/MVi TVe/TVi awRR range	$\leq 4 \sec \leq 4.2 \sec \leq 4.2 \sec \leq 4.4 \sec ml/min, using DRYLI::\leq 4.2 \sec \leq 4.3 \sec \leq 4.5 \sec 10,15,20,25,30,35,4 ort calibrated by age entify and monitorin Diff-Pressure flow Adult/Pediatric: \pm (1)Neonate: \pm (0.5 to) -20 to 120 cmH_2O Adult/Pediatric: 2 t Infant: 0.5 to 15 L/r Adult/Pediatric: 10 Infant: 20 to 500 m 4 to 120 rpm 0.1 L/min 0.1 L/min (MVe/IV 0.1 L/min (MVe/IV 1 ml 1 rpm$	I0 sec). ng. 2 to 120) L/min 30) L/min o 60 L/min nin 0 to 1500 ml I IVi < 10 L/min) IVi < 10 L/min)			
Provi Supp RM Meth Meas	CO ₂ : N ₂ O: O ₂ : Enf /Iso/Hal/Sev/De Sampling flow 200 2.5m sampling line CO ₂ : N ₂ O: O ₂ : Enf/Iso/Hal/Sev/De a time de MAC value (suppo ort two mixed gas id od urement Range Flow Paw MVe/MVi TVe/TVi awRR range ution Flow Paw MVe/MVi TVe/TVi awRR range	$\leq 4 \sec \leq 4.2 \sec \leq 4.2 \sec \leq 4.4 \sec ml/min, using DRYLI::\leq 4.2 \sec \leq 4.3 \sec \leq 4.5 \sec 10,15,20,25,30,35,4 ort calibrated by age entify and monitorin Diff-Pressure flow Adult/Pediatric: \pm (1)Neonate: \pm (0.5 to 1)-20 to 120 cmH2OAdult/Pediatric: 2 theoremInfant: 0.5 to 15 L/rAdult/Pediatric: 10 Infant: 20 to 500 m4 to 120 rpm0.1 L/min (MVe/MV1 ml1 rpmAdult/Pediatric: \pm 1$	I0 sec). ng. 2 to 120) L/min 30) L/min o 60 L/min nin 0 to 1500 ml l IVi < 10 L/min) /i ≥ 10 L/min) 1.2 L/min or ± 10% of the			
Provi Supp RM Meth Meas	CO ₂ : N ₂ O: O ₂ : Enf /Iso/Hal/Sev/De Sampling flow 200 2.5m sampling line CO ₂ : N ₂ O: O ₂ : Enf/Iso/Hal/Sev/De a time de MAC value (suppo ort two mixed gas id od urement Range Flow Paw MVe/MVi TVe/TVi awRR range ution Flow Paw MVe/MVi TVe/TVi awRR range	$\leq 4 \sec \leq 4.2 \sec \leq 4.2 \sec \leq 4.8 \sec = 4.4 \sec = ml/min, using DRYLI:: \leq 4.2 \sec \leq 4.3 \sec \leq 4.3 \sec \leq 4.3 \sec \leq 4.3 \sec \leq 4.5 \sec = 10,15,20,25,30,35,4 ort calibrated by age entify and monitorin Diff-Pressure flow Adult/Pediatric: \pm (1)Neonate: \pm (0.5 to 1)-20 to 120 cmH2OAdult/Pediatric: 2 theorem= 100 mm= 120 cmAdult/Pediatric: 10Infant: 20 to 500 mm= 4 to 120 rpm0.1 L/min (MVe/MV1 ml1 rpmAdult/Pediatric: \pm 1reading, whichevel$	10 sec). 1g. 2 to 120) L/min 30) L/min o 60 L/min nin 0 to 1500 ml 1 Vi < 10 L/min $i \ge 10 L/min $ 1.2 L/min or ± 10% of the r is greater.			
Provi Supp RM Meth Meas	CO ₂ : N ₂ O: O ₂ : Enf /Iso/Hal/Sev/De Sampling flow 200 2.5m sampling line CO ₂ : N ₂ O: O ₂ : Enf/Iso/Hal/Sev/De a time de MAC value (suppo ort two mixed gas id od urement Range Flow Paw MVe/MVi TVe/TVi awRR range ution Flow Paw MVe/MVi TVe/TVi awRR range	$\leq 4 \sec \leq 4.2 \sec \leq 4.2 \sec \leq 4.8 \sec = 4.4 \sec = ml/min, using DRYLI:: \leq 4.2 \sec \leq 4.3 \sec \leq 4.3 \sec \leq 4.3 \sec \leq 4.3 \sec \leq 4.5 \sec = 10,15,20,25,30,35,4 ort calibrated by age entify and monitorin Diff-Pressure flow Adult/Pediatric: \pm (1)Neonate: \pm (0.5 to 1)-20 to 120 cmH2OAdult/Pediatric: 2 theorem= 100 mm= 120 cmAdult/Pediatric: 10Infant: 20 to 500 mm= 4 to 120 rpm0.1 L/min (MVe/MV1 ml1 rpmAdult/Pediatric: \pm 1reading, whichevel$	I0 sec). ng. 2 to 120) L/min 30) L/min o 60 L/min nin 0 to 1500 ml 1 IVi < 10 L/min) /i ≥ 10 L/min) 1.2 L/min or ± 10% of the			

```
Paw
                           \pm 3% of reading
       MVe/MVi
                           ± 10% of reading
       TVe/TVi
                           Adult/Pediatric: ±10% or ±15 ml, whichever is
                           greater.
                           Infant: \pm 10\% or \pm 6 ml, whichever is greater.
       awRR:
                           ±1 rpm (4 to 99 rpm)
                           ±2 rpm (100 to 120 rpm)
Provide loops display.
Monitoring parameters include PEEP, Pmean, PIP, Pplat, PEF, PIF, MVe, MVi, TVe,
TVi, RR, I:E, FEV1.0, Compl, RSBI, NIF, WOB, RAW.
rSO<sub>2</sub>
Patient
                           Adult/Pediatric/Neonate.
                           INVOS, NIRS (Near Infrared Spectroscopy)
Method
Number
                           Up to 4 channels
Measurement Range
                           15 to 95 %
NMT
Meet the standard of IEC 60601-2-10
Sensor Type
                           Acceleromyography sensor
Stimulation Modes
                           ST, TOF, PTC, DBS3.2, DBS3.3
Stimulation Current Range
                           0 to 60 mA
Stimulation Current Accuracy
                           \pm 5% or \pm2 mA, whichever is greater.
Stimulation Pulse Width
                           100,200 or 300µs,monophasic rectangle pulse
Stimulation Pulse Width Accuracy
                           \pm 10\%
Max. Output Voltage
                           300 V
BISx/BISx4
Meet standard of IEC 60601-2-26.
Method
                           Bispectral Index
Impedance Range
                           0 to 999 kΩ
EEG Bandwidth
                           0.25 to 100 Hz
BIS Range
                           0 to 100 (BIS, BIS L, BIS R)
SQI Range
                           0 to 100 % (SQI, SQI L, SQI R)
ASYM
                           0 to 100%
DSA Trend
                           Yes
EEG
Meet standard of IEC 60601-2-26.
EEG Channels
                           Up to 4 channels
Montage Mode
                           Biopolar mode, referential mode
Input Signal Range - 2 mVp-p to + 2mVp-p
Max. Input DC Offset
                           ± 500 mV
                           \geq 100~dB @51 k\Omega imbalance and 60 Hz
CMRR
Noise Level
                           \leq 0.5 \muV rms (1 Hz to 30 Hz)
Differential Input Impedance
                           > 15 MΩ @10 Hz
Electrode Impedance
       Range
                    0 to 90 kΩ
       Accurancy
                           \pm 1 k\Omega or \pm 10%, whichever is greater
Sampling Frequency
                           1024 Hz
Analog bandwidth
                           0.5 to 110 Hz
                           SEF, MF, PPF, TF, Delta, Theta, Alpha, and Beda
Spectrum analysis
Trend
                           DSA, CSA
tcGas
Interfaces with TCM CombiM, TCM TOSCA or SenTec SDM monitor.
Measurement Range
      tcpCO<sub>2</sub>
                           5 to 200 mmHg
                           0 to 800 mmHg
       tcpO<sub>2</sub>
       SpO2
                           0 to 100 %
       PR
                           25 to 240 bpm
       Power
                           0 to 1000 mW
Accuracy
       tcpCO<sub>2</sub>
                           TOSCA Sensor 92, tc Sensor 54:
                           Better than 1 mmHg (1 % or 10 % CO<sub>2</sub>)
                           Better than 3 mmHg (33 % CO<sub>2</sub>)
                           tc Sensor 84:
                           Better than 1 mmHg (1 % or 10 % CO<sub>2</sub>)
                           Better than 5 mmHg (33 % CO<sub>2</sub>)
       tcpO<sub>2</sub>
                           tc Sensor 84:
                           Better than 1 mmHg (0 % O<sub>2</sub>)
                           Better than 3 mmHg (21 % O<sub>2</sub>)
                           Better than 5 mmHg (50 % O<sub>2</sub>)
                           Better than 25 mmHg (90 % O<sub>2</sub>)
       SpO<sub>2</sub>
                           ±3 % (70 to 100 %)
       PR
                           ±3 bpm
                           ±20 % of reading
       Power
iView (for N17 only)
CPU
                           Intel Pentium N4200 2.5GHz
Memory
                           8 GB
                           mSATA SSD 128GB
Hard-disk
OS
                           Windows 10
Recorder
Туре
                           Thermal array
Speed
                           25 mm/sec, 50 mm/sec
```

Trace	Up to 3 (paper 50 mm width, 20 m		S		
Supports integrated reco	order module.		QRS De Sensitiv		
Audible indicator	Yes, 3 different alarm tones, and pr		Pace En		
Visible indicator	Red/yellow/cyan LED, and alarm m		S		
Provide AlarmSight info			Р		
Data Storage			S		
Trends Data	> 120 hrs @ 1min, 4 hrs @ 5 sec.				
Events	1000 events, including parameter		IBP Ana		
NIRD	arrhythmia events, technical alarm 1000 sets	s, and so on.	Bandwi		
NIBP Interpretation of resting			Max. Tra		
interpretation of resting	20 sets		Sensitiv		
Full disclosure	48 hours for all parameters and wa		Interfa		
	(8G storage card)		AC Pow		
	48 hours at maximum. The spec	ific storage time	RJ45 Ne		
	depends on the waveforms stored		N		
	of stored waveforms. (2G storage o		N		
OxyCRG	48 hrs		USB 2.0 N		
ST review Minitrend	120 hrs @1 min Yes		N		
Special Functions	les		Nonstar		
Clinical Assistive Applica	tion (CAA):		N		
· · · · · · · · · · · · · · · · · · ·	HemoSight [™] , ST Graphic [™] , Se	osisSight™, BoA	N		
	Dashboard [™] , EWS, GCS, 24hrs EC	G Summary, Pace	Standar		
	View		N		
	rug, hemodynamic, Oxygenation, Ve		N		
and Titration table.	tion with Poncy/isian TMAG		BNC Co		
Support wireless connect Support nView remote d	tion with BeneVision TM80 and BP10		Equipot		
Wi-Fi Communications	isplay tool		Multifu		
Protocol	IEEE 802.11a/b/g/n		martinai		
Modulation Mode	DSSS and OFDM		Module		
Operating Frequency			N		
IEEE 802.11b/g/n	(2.4G):		N		
ETSI/FCC/KC:	2.4 to 2.483 GHz		Barcode		
MIC:	2.4 to 2.495 GHz		Keyboa		
IEEE 802.11a/n (50 ETSI:	נ: 5.15 to 5.35 GHz, 5.47 to 5.725 GHz		Remote Networ		
FCC:	5.15 to 5.35 GHz, 5.725 to 5.82 GHz		Battery		
MIC:	5.15 to 5.35 GHz		Type		
KC:	5.15 to 5.35 GHz, 5.47 to 5.725 GHz		Numbe		
	5.725 to 5.82 GHz	,	Capacit		
Channel Spacing	5 MHz @ 2.4 GHz (802.11 b/g/n)		Run Tim		
	20 MHz @ 5 GHz (802.11 a/n)				
Wireless Baud Rate	IEEE 802.11a: 6 to 54 Mbps				
	IEEE 802.11b: 1 to 11 Mbps				
	IEEE 802.11g: 6 to 54 Mbps IEEE 802.11n: 6.5 to 72.2 Mbps		N		
Output Power	< 20dBm (CE requirement: detection	n	Recharg		
output i owei	mode- RMS)		Power I		
	< 30dBm (FCC requirement, detect		AC Volta		
	mode- peak power)		Current		
Operating Mode	Infrastructure		Frequer		
Data Security	WPA-PSK, WPA2-PSK, WPA-Enterpr		Enviror		
	WPA2-Enterprise (EAP-FAST, EAP-T		Temper		
	PEAP-GTC, PEAP-MSCHAPv2, PEAP	-TLS, LEAP)			
MPAN Communication	Encryption: TKIP and AES		Humidi		
Modulation Mode	GFSK		inaman		
Operating Frequency	2402 to 2480 MHz		Dawawaa		
Channel Spacing	2 MHz		Barome		
Wireless Baud Rate	1 Mbps				
Output Power	≤ 2.5 mW				
Data Security	Private protocol		Safety		
	pairing for BeneVision TM80, BP10 N		Type of		
BeneVision N series patie	ent monitor.		Degree		
Output Auxiliary Output					
Standard	Meets the requirements of ANSI	AAMI/IEC	Protecti		
Standard	60601-1 for short-circuit protect				
	current				
ECG Analog Output			Some o		
	rence frequency: 10 Hz)		contact		
Diagnostic Mode			informa		
Monitor Mode:	0.5 to 40 Hz		ппоша		
Surgical Mode:	1 to 20 Hz				
		mindray Healthcare with reach are I	egistered tra		
Mindray Building, Keji 12	Mindray Building, Keji 12th Road South, © 2018 Shenzhen Mindra				
High-tech Industrial Park	x, Nanshan, Shenzhen 518057, P.R. China	P/N: ENG-BeneVision N1	7/N15/N1		
Tel: +86 755 8188 8998	Fax: +86 755 26582680				
	dray.com www.mindray.com				
	,				

T Mode: 0.05 to 40 Hz ≤ 25 ms (in diagnostic mode, and non-paced) lay 1 V/mV, ± 5 % vitv nhancement Signal Amplitude: Voh ≥ 2.5 V Pulse Width: 10 ms ± 5 % ignal Rising and Falling Time: ≤ 100 µs alog Output idth (- 3 dB; reference frequency: 10 Hz) 0 to 40 Hz ransmission Delay 30 ms 1 V/100 mmHg, ± 5 % vity icing ver Connector 1 etwork Connector, 100 Base-TX, IEEE 802.3 N17: 2 (1 for iView) N15/N12: 1 Connector N17: 8 (4 for iView) N15/N12: 4 andard USB SMR Connector 1 to connect SMR, N1/T1 docking station N17/N5: 1 to connect N1/T1 docking station N12: rd DVI-D Video Interface Connector N17: 2 (1 for iView) N15/N12: 1 onnector 1 otential Grounding Terminal Inction Connector for Defib Sync and Analog Output 1 on multi-parameter module e Slot N17/N15: 6 slots N12: 4 slots le Scanner Support 1D and 2D barcode rd & Mouse Support wire and wireless type via USB e Control Support rk Printer Support Rechargeable lithium-ion er of Battery 4500mAh, 11.1 VDC ty ne when powered by a new fully-charged battery at 25 °C±5 °C with 5-lead ECG , SpO2, and auto NIBP measurements every 15 min, and screen brightness set to 1. N17/N15: > 2 hrsN12: > 4 hrsge Time 4.5 hrs to 90% when the monitor is off. Requirements 100 to 240 VAC (±10 %) tage 2.0 to 0.9 A ency 50 Hz/60 Hz (±3 Hz) nmental requirements Operating: 0 to 40 °C (32 to 104 °F) rature Storage: -20 to 60 °C (-4 to 140 °F) Operating: 15 to 95 % (non condensing) ity Storage: 10 to 95 % (non condensing) Operating: 427.5 to 805.5 mmHg (57.0 to 107.4 etric kPa) Storage: 120 to 805.5 mmHg (16.0 to 107.4 kPa) Protection Class I of Protection MPM/IBP/C.O./NMT/EEG module: CF ScvO₂/CO₂/AG/BIS/rSO₂ module: BF tion Against Ingress of Fluids IPX1

Some of functions marked with an asterisk may not be available. Please contact your local Mindray sales representative for the most current information.

Indray Institute with such are registered trademarks or trademarks owned by Shenzhen Mindray Bio-medical Electronics Co., LTD 2018 Shenzhen Mindray Bio-medical Electronics Co., Ltd. All rights reserved. Specifications subject to changes without prior notice. N: ENG-BeneVision N17/N15/N12 Datasheet-210285x4P-20190610

